
Paxos

The	Part-Time	Parliament

• Parliament	determines	laws	
by	passing	sequence	of	
numbered	decrees	

• Legislators	can	leave	and	
enter	the	chamber	at	
arbitrary	>mes	

• No	centralized	record	of	
approved	decrees–instead,	
each	legislator	carries	a	
ledger

Government	101

• No	two	ledgers	contain	contradictory	informa>on	

• If	a	majority	of	legislators	were	in	the	Chamber	and	
no	one	entered	or	leI	the	Chamber	for	a	sufficiently	
long	>me,	then		

• any	decree	proposed	by	a	legislator	would	eventually	be	
passed	

• any	passed	decree	would	appear	on	the	ledger	of	every	
legislator	

Government	102

• Paxos	legislature	is	non-par>san,	progressive,	and	
well-inten>oned	

• Legislators	only	care	that	something	is	agreed	to,	not	
what	is	agreed	to	

• We’ll	take	care	of	Byzan>ne	legislators	later

Back	to	the	future

• A	set	of	processes	that	can	propose	values	

• Processes	can	crash	and	recover	

• Processes	have	access	to	stable	storage	

• Asynchronous	communica>on	via	messages	

• Messages	can	be	lost	and	duplicated,	but	not	
corrupted

The	Game:	Consensus

SAFETY	

• Only	a	value	that	has	been	proposed	can	be	chosen	

• Only	a	single	value	is	chosen	

• A	process	never	learns	that	a	value	has	been	chosen	unless	it	
has	been	

LIVENESS	

• Some	proposed	value	is	eventually	chosen	

• If	a	value	is	chosen,	a	process	eventually	learns	it

The	Players

• Proposers	

• Acceptors	

• Learners

Choosing	a	value

Use	a	single	acceptor

5

7

6

2

6
a1

What	if
the	acceptor	fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

6

6
6 is chosen!

6
6

a1

a2

a3

Accep>ng	a	value

• Suppose	only	one	value	is	proposed	by	a	single	
proposer.	

• That	value	should	be	chosen!	

• First	requirement:	

P1:		An	acceptor	must	accept	the	first	proposal	that	it	receives	

• ...but	what	if	we	have	mul>ple	proposers,	each	
proposing	a	different	value?

P1	+	mul>ple	proposers

5

7

6

2

5

6

2

No value is chosen!

a1

a2

a3

Handling	mul>ple	proposals

• Acceptors	must	accept	more	than	one	proposal	

• To	keep	track	of	different	proposals,	assign	a	natural	
number	to	each	proposal	

• A	proposal	is	then	a	pair	(psn,	value)	

• Different	proposals	have	different	psn	

• A	proposal	is	chosen	when	it	has	been	accepted	by	a	
majority	of	acceptors	

• A	value	is	chosen	when	a	single	proposal	with	that	value	has	
been	chosen

Choosing	a	unique	value

“Any	acceptor	can	accept	as	many	proposals	as	he	
wants,	so	long	as	they	all	propose	the	same	value”	

													Leslie	Lamport	

P2.	If	a	proposal	with	value	v	is	chosen,	then	every	
higher-numbered	proposal	that	is	chosen	has	value	v

It’s	up	to	the	Acceptors!

P2.	If	a	proposal	with	value	v	is	chosen,	then	every	higher-
numbered	proposal	that	is	chosen	has	value	v

We	strengthen	it	to:	

P2a.	If	a	proposal	with	value	v	is	chosen,	then	every	higher-
numbered	proposal	accepted	by	any	acceptor	has	value	v

What	about	P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

(2,7)

(1,6)

(1,6)

6 is chosen!

5

7

6

2

a1

a2

a3

How does know

it should not accept?

a1

It’s	up	to	the	Proposers!

					Recall	P2a:	

P2a.	If	a	proposal	with	value	v	is	chosen,	then	every	higher-
numbered	proposal	accepted	by	any	acceptor	has	value	v

We	strengthen	it	to:	

P2b.	If	a	proposal	with	value	v	is	chosen,	then	every	higher-
numbered	proposal	issued	by	any	proposer	has	value	v

What	to	propose

Suppose	p	wants	to	issue	a	proposal	numbered	n.		 	

• If	p	can	be	certain	that	no	proposal	numbered	n’ < n	has	been	
chosen	then	p	can	propose	any	value!	

• If	a	proposal	numbered	n’ < n has	been	chosen,	then	it	has	been	
accepted	by	a	majority	set	S	

• Any	majority	set	S’	must	intersect	S	

• If	p	can	find	one	S’	in	which	no	acceptors	has	accepted	a	proposal	
numbered	n’ < n , then	no	such	proposal	can	have	yet	been	chosen!	

• If	no	such	S’,	a	proposal	numbered	n’ < n may	have	been	chosen...	

• Then	what?

P2b: If a proposal with value v is chosen, then every
higher-numbered proposal issued by any proposer has value
v

What	to	propose

Suppose	p	wants	to	issue	a	proposal	numbered	n.		 	

• If	p	can	be	certain	that	no	proposal	numbered	n’ < n	has	been	chosen	then	p	can	
propose	any	value!	

• If	not,	p	should	propose	the	chosen	value.	But	how?	
• What	about	using	induc>on...	

• Say	proposal	numbered	m	with	value	v	is	chosen:	some	majority-set	C	of	
acceptors	has	accepted	it	

• Suppose	every	proposal	issued	with	number m...n-1	has	value	v	
• Consider	proposal	n :	since	every	majority	set	S’	intersects	with	C	and	every	

proposal	accepted	by	any	acceptor	with	sequence	number	in	m...n-1	has	value	
v, then	

• p	should	propose	the	highest	numbered	proposal	among	all	proposals,	
numbered	less	than	n, accepted	by	some	majority	set	S	

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

It’s	up	to	an	invariant!

Achieved	by	enforcing	the	following	invariant	

P2c:	For	any	v	and	n,	if	a	proposal	with	value	v	and	number	n	is	
issued,	then	there	is	a	set	S	consis>ng	of	a	majority	of	acceptors	
such	that	either:	

• no	acceptor	in	S	has	accepted	any	proposal	numbered	less	
than	n, or	

• v	is	the	value	of	the	highest-numbered	proposal	among	all	
proposals	numbered	less	than	n	accepted	by	the	acceptors	in	S

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

P2c	in	ac>on

• v	is	the	value	of	the	
highest-numbered	
proposal	among	all	
proposals	numbered	
less	than	n	and	
accepted	by	the	
acceptors	in	S

(4,8)

(3,2)

(5,2)

S

(18,2)

a1

a2

a3

P2c	in	ac>on

• v	is	the	value	of	the	
highest-numbered	
proposal	among	all	
proposals	numbered	
less	than	n	and	
accepted	by	the	
acceptors	in	S

(2,2)

(3,2)

(4,1)

S(18,1)

(5,2)
(5,2)

The invariant is violated

Future	telling?

• p	must	learn	the	highest-numbered	proposal	with	
number	less	than	n,	if	any,	that	has	been	or	will	be	
accepted	by	each	acceptor	in	some	majority	of	
acceptors.	

• Avoid	predic>ng	the	future	by	extrac>ng	a	promise	
from	a	majority	of	acceptors	not	to	subsequently	
accept	any	proposals	numbered	less	than	n

	The	proposer’s	protocol	(I)

• A	proposer	chooses	a	new	proposal	number	n and	sends	a	
request	to	each	member	of	some	set	of	acceptors,	asking	it	to	
respond	with:	

a. A	promise	never	again	to	accept	a	proposal	numbered	less	
than	n,	and	

b. The	accepted	proposal	with	highest	number	less	than	n	if	
any.	

...call	this	a	prepare	request	with	number	n

	The	proposer’s	protocol	(II)

• If	the	proposer	receives	a	response	from	a	majority	of	
acceptors,	then	it	can	issue	a	proposal	with	number	n and	
value v,	where	v	is		

• the	value	of	the	highest-numbered	proposal	among	the	
responses,	or		

• is	any	value	selected	by	the	proposer	if	responders	returned	
no	proposals	

A	proposer	issues	a	proposal	by	sending,	to	some	set	of	acceptors,	
a	request	that	the	proposal	be	accepted.			

...call	this	an	accept	request.

	The	acceptor’s	protocol

• An	acceptor	receives	prepare	and	accept	requests	
from	proposers.		

• It	can	always	respond	to	a	prepare	request	

• It	can	respond	to	an	accept	request,	accep>ng	the	proposal,	
iff	it	has	not	promised	not	to,	e.g.	

P1a:	An	acceptor	can	accept	a	proposal	numbered	n	iff	it	has	
not	responded	to	a	prepare	request	having	number	greater	
than	n
...which	subsumes	P1.

Small	op>miza>ons

• If	an	acceptor	receives	a	prepare	request	r	numbered	n	when	it	
has	already	responded	to	a	prepare	request	for	n’ > n,	then	the	
acceptor	can	simply	ignore	r.	

...so	an	acceptor	needs	only	remember	the	highest	numbered	
proposal	it	has	accepted	and	the	number	of	the	highest-
numbered	prepare	request	to	which	it	has	responded.	

Choosing	a	value:
Phase	1

• A	proposer	chooses	a	new	n and	sends	<prepare,n>	to	a	
majority	of	acceptors	

• If	an	acceptor	a	receives	<prepare,n’>,	where	n’ > n of	any	
<prepare,n>	to	which	it	has	responded,	then	it	responds	to	
<prepare, n’ >	with		

• a	promise	not	to	accept	any	more	proposals	numbered	less	
than	n’

• the	highest	numbered	proposal	(if	any)	that	it	has	accepted

Choosing	a	value:
Phase	2

• If	the	proposer	receives	a	response	to	<prepare,n>	from	a	
majority	of	acceptors,	then	it	sends	to	each	<accept,n,v>,	
where	v	is	either	
• the	value	of	the	highest	numbered	proposal	among	the	

responses	

• any	value	if	the	responses	reported	no	proposals	

• If	an	acceptor	receives	<accept,n,v>,	it	accepts	the	proposal	
unless	it	has	in	the	mean>me	responded	to	<prepare,n’>	,	
where	n’ > n	

Learning	chosen	
values	(I)

Once	a	value	is	chosen,	learners	should	find	out	about	
it.	Many	strategies	are	possible:	

i. Each	acceptor	informs	each	learner	whenever	it	accepts	a	
proposal.	

ii. Acceptors	inform	a	dis>nguished	learner,	who	informs	the	
other	learners	

iii. Something	in	between	(a	set	of	not-quite-as-dis>nguished	
learners)

Ques>ons

What	are	the	liveness	proper>es	of	Paxos?

Ques>on

What	do	you	do	when	nodes	fail?

Ques>on

Are	there	any	advantages/disadvantages	to	having	a	
designated	leader?

Implemen>ng	State	
Machine	Replica>on

Implement	a	sequence	of	separate	instances	of	
consensus,	where	the	value	chosen	by	the	ith	instance	
is	the	ith	message	in	the	sequence.	

Each	server	assumes	all	three	roles	in	each	instance	of	
the	algorithm.	

Assume	that	the	set	of	servers	is	fixed

The	role	of	the	leader

In	normal	opera>on,	elect	a	single	server	to	be	a	
leader.	The	leader	acts	as	the	dis>nguished	proposer	
in	all	instances	of	the	consensus	algorithm.	

Clients	send	commands	to	the	leader,	which	decides	where	
in	the	sequence	each	command	should	appear.	

If	the	leader,	for	example,	decides	that	a	client	command	is	
the	kth	command,	it	tries	to	have	the	command	chosen	as	
the	value	in	the	kth	instance	of	consensus.

A	new	leader	is	elected...

Since	leader	is	a	learner	in	all	instances	of	consensus,	it	should	
know	most	of	the	commands	that	have	already	been	chosen.	
For	example,	it	might	know	commands	1-10,	13,	and	15.	

It	executes	phase	1	of	instances	11,	12,	and	14	and	of	all	
instances	16	and	larger.		

This	might	leave,	say,	14	and	16	constrained	and	11,	12	and	
all	commands	aIer	16	unconstrained.	

leader	then	executes	phase	2	of	14	and	16,	thereby	
choosing	the	commands	numbered	14	and	16

Stop-gap	measures
All	replicas	can	execute	commands	1-10,	but	not	13-16	because	
11	and	12	haven't	yet	been	chosen.	

leader	can	either	take	the	next	two	commands	requested	by	
clients	to	be	commands	11	and	12,	or	can	propose	immediately	
that	11	and	12	be	no-op	commands.	

leader	runs	phase	2	of	consensus	for	instance	numbers	11	and	
12.	

Once	consensus	is	achieved,	all	replicas	can	execute	all	
commands	through	16.

To	infinity,	and	beyond

leader	can	efficiently	execute	phase	1	for	infinitely	
many	instances	of	consensus!	(e.g.	command	16	and	
higher)	

leader	just	sends	a	message	with	a	sufficiently	high	proposal	
number	for	all	instances	

An	acceptor	replies	non	trivially	only	for	instances	for	which	
it	has	already	accepted	a	value

Ques>on

What	are	the	costs	to	using	Paxos?		Is	it	prac>cal?

