
Shared	Virtual	Memory

Context

• Parallel	architectures	&	programming	models	

• Bus-based	shared	memory	mul>processors	

• h/w	support	for	coherent	shared	memory	

• can	run	both	shared	memory	&	message	passing	

• scalable	to	10’s	of	nodes	

• Distributed	memory	machines/clusters	of	worksta>on	

• provides	message	passing	interface	

• scalable	up	to	1000s	of	nodes	

• cheap!		economies	of	scale,	commodity	shelf	h/w

Distributed	Shared	
Memory

• Radical	idea:	let	us	not	have	the	hardware	dictate	
what	programming	model	we	can	use	

• Provide	a	shared	address	space	abstrac>on	even	on	
clusters	

• Is	this	a	good	idea?		What	are	the	upsides/downsides	
of	this	approach?

DSM	Issues

• What	is	the	granularity	of	sharing?	

• What	is	the	addi>onal	overhead?	

• What	is	the	consistency	model?

How	do	we	provide	this	abstrac>on?

• Opera>ng	system	support		

• page	level	granularity,	hardware	protec>on	

• e.g.,	Ivy,	Treadmarks,	Munin	

• Compiler	support	(Shasta)	

• minimize	overhead	through	compiler	analysis	

• object	granularity	as	opposed	to	byte	granularity	

• no>ons	of	immutable	data,	sharing	paWerns	

• Limited	hardware	support	(Wisconsin	Wind	Tunnel,	
DEC	memory	channel)

IVY	Shared	Virtual	Memory

• Seminal	system	that	sparked	the	en>re	field	of	DSM	
(distributed	shared	memory)	

• Mo>va>ons:	

• sharing	things	on	a	network	

• “embassy”	system	to	support	a	network	file	system	between	
two	different	OSes	

• parallel	scheme	run	>me	system	on	a	cluster	

• Focus:	parallel	compu>ng	and	not	distributed	compu>ng	

• less	emphasis	on	request-reply,	fault-tolerance,	security

Tradi>onal	Virtual	Memory

CPU
MMU
Cache

DRAM
Page
table

Node

Virtual
Memory

physical page # validVirt. page #

• Page Table entry:

• If “valid”, translation exists
• If “not valid”, traps into the kernel, gets the page, re-executes

trapped instruction
• Check is made for every access; TLB serves as a cache for the

page table entries

Shared	Virtual	Memory

Shared
Virtual

Memory

CPU
MMU
Cache

DRAM
Page
table

Node 1

CPU
MMU
Cache

DRAM
Page
table

Node N

...

• Pool of “shared pages”: if not
local, page is not mapped

• Page table entry access bits

• H/w detects read access to
invalid page
• read faults

• H/w detects writes to mapped
memory with no write access
• write faults

• OS maintains consistency at VM
page level
• copying data
• setting access bits

•physical page # valid•Virt. page # access

Issues

• Programming	model	(as	in	coherence,	consistency,	
etc.)	

• Correctness	of	implementa>on	

• Performance	related	issues

Programming	Model

• Contract	between	programmer	and	h/w	

• Ordering	guarantees	can	vary	from	weak	to	strong	

• No	guarantees	

• Coherence	(i.e.,	ensures	consistent	ordering	of	opera>ons	
on	a	per-variable	basis)	

• Consistency	model	(e.g.,	sequen>al	consistency	that	takes	
into	account	program	order	and	relates	opera>ons	across	
variables)	

• Linearizability	(strong	guarantee)

Sequen>al	Consistency
“The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified
by its program” (Lamport, 1979)
p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)a

Is this data store sequentially consistent?

1 2

1 2

R(x)a

R(x)b

Sequen>al	Consistency
“The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified
by its program” (Lamport, 1979)
p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

Is this data store sequentially consistent?

1 2

1 2

R(x)a

R(x)bR(x)a

Sources	of	“reorderings”

• Mul>ple	caches	&	cache	update	policy	

• Write	buffer	and	reordering	of	writes	

• Compiler	rewrites	

• Doing	something	smart	to	hide	latency	==>	weaker	
consistency	guarantees

“The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified by
its program.

In addition, if , then operation
should precede in this sequence (Herlihy & Wing,
1991)

Linearizability

tsOP1(x) < tsOP2(y) OP1(x)

OP2(y)

Weakening Sequential
Consistency: Causal Consistency

Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order on different
machines. (Hutto and Ahamad, 1990)

Is this data store sequentially consistent?
Causally consistent?

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

More Weakening: FIFO
Consistency

“Writes done by a single process are seen by all other processes in
the order in which they were issued, but writes from different
processes may be seen in a different order by different
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

Is this data store causally consistent?
Is this data store FIFO consistent?

• What	do	you	make	out	of	these	consistency	models?

Ivy	DSM

• Goal:	provide	sequen>ally	consistent	shared	memory	

• Distributed	protocol	for	coherence	

• Baseline	Implementa>on:	

• centralized	manager	

• manager	maintains	the	“owner”	and	the	set	of	readers	
(“copyset”)

Read	Faults

• Handler	on	client:	

• asks	manager	

• manager	forwards	request	to	owner	

• owner	sends	the	page	

• requester	sends	an	ACK	to	manager

Pseudocode

Read Fault Handler:

Lock(Ptable[p].lock);
ask manager for p;
receive p;
send confirmation to manager;
Ptable[p].access = read;
Unlock(Ptable[p].lock);

Read Server:

Lock(Ptable[p].lock);
Ptable[p].access = read;
send copy of p;
Unlock(Ptable[p].lock);

Manager:

Lock(Info[p].lock);
Info[p].copyset =
 Info[p].copyset U {reqNode};
ask Info[p].owner to send p;
receive confirmation from reqNode;
Unlock(Info[p].lock);

Write	Faults

• Handling	includes	invalida>ons:	

• make	request	to	manager	

• copies	are	invalidated	

• manager	forwards	request	to	owner	

• owner	relinquishes	page	to	requester	

• requester	sends	an	ACK	to	the	owner

Write	Pseudocode

Write Fault Handler:

Lock(Ptable[p].lock);
ask manager for p;
receive p;
send confirmation to manager;
Ptable[p].access = write;
Unlock(Ptable[p].lock);

Manager:

Lock(Info[p].lock);
Invalid(p, Info[p].copyset);
Info[p].copyset = {};
ask Info[p].owner to send p;
receive confirmation from reqNode;
Unlock(Info[p].lock);

Write Server:

Lock(Ptable[p].lock);
Ptable[p].access = nil;
send copy of p;
Unlock(Ptable[p].lock);

Improved	Manager

• Owner	serves	as	the	manager	for	each	page

Read Fault Handler:

Lock(Ptable[p].lock);
ask manager for p;
receive p;
Ptable[p].access = read;
Unlock(Ptable[p].lock);

Read Server:

Lock(Ptable[p].lock);
If I am owner {
 Ptable[p].access = read;
 Ptable[p].copyset =
 Ptable[p].copyset U {reqNode};
 send copy of p;
} else {
 forward request to probable owner;
}
Unlock(Ptable[p].lock);

Performance	Ques>ons

• In	what	situa>ons	will	IVY	perform	well?	

• How	can	we	improve	IVY’s	performance?

