
Byzan&ne	Fault	
Tolerance



Fault	Tolerance

• We	have	so	far	assumed	“fail-stop”	failures	(e.g.,	
power	failures	or	system	crashes)	

• In	other	words,	if	the	server	is	up,	it	follows	the	
protocol	

• Hard	enough:	

• difficult	to	dis&nguish	between	crash	vs.	network	down	

• difficult	to	deal	with	network	par&&on



Larger	Class	of	Failures

• Can	one	handle	a	larger	class	of	failures?	

• Buggy	servers	that	compute	incorrectly	rather	than	stopping	

• Servers	that	have	been	modified	by	an	aOacker	

• Referred	to	as	Byzan&ne	faults



Model

• Provide	a	replicated	state	machine	abstrac&on	

• Assume	2f+1	of	3f+1	nodes	are	non-faulty	

• In	other	words,	one	needs	3f+1	replicas	to	handle	f	faults	

• Asynchronous	system,	unreliable	channels	

• Use	cryptography	(both	public-key	and	secret-key	
crypto)



General	Idea

• Primary-backup	plus	quorum	system	

• Execu&ons	are	sequences	of	views	

• Clients	send	signed	commands	to	primary	of	current	view	

• Primary	assigns	sequence	number	to	client’s	command	

• Primary	commits	to	a	quorum



AOacker’s	Powers

• Worst	case:	a	single	aOacker	controls	the	f	faulty	
replicas	

• Supplies	the	code	that	faulty	replicas	run	

• Knows	the	code	the	non-faulty	replicas	are	running	

• Knows	the	faulty	replicas’	crypto	keys	

• Can	read	network	messages



What	faults	cannot	happen?

• No	more	than	f	out	of	3f+1	replicas	can	be	faulty	

• No	client	failure	--	clients	can	never	do	anything	bad	
(or	rather	such	behavior	can	be	detected	using	
standard	techniques)	

• No	guessing	of	crypto	keys	or	breaking	of	
cryptography



• Ques&on:	in	a	Paxos	RSM	seang,	what	could	the	
aOackers	or	byzan&ne	nodes	do	to	foil	the	protocol?



What	could	go	wrong?

• Primary	could	be	faulty!	

• Could	ignore	commands;	assign	same	sequence	number	to	
different	requests;	skip	sequence	numbers;	etc.	

• Can	equivocate	or	lie	differently	to	different	nodes	

• Backups	could	be	faulty!	

• Could	incorrectly	store	commands	forwarded	by	a	correct	
primary	

• Faulty	replicas	could	incorrectly	respond	to	the	client!



Example	Use	Scenario

• Arvind:	

				echo	A	>	grade	

				echo	B	>	grade	

				tell	Kaiyuan	"the	grade	file	is	ready"	

• 		Kaiyuan:	

				cat	grade



Design	1

• client,	n	servers	

• client	sends	request	to	all	of	them	

• waits	for	all	n	to	reply	

• only	proceeds	if	all	n	agree	

• what	is	wrong	with	this	design?



Design	2

• let	us	have	replicas	vote	

• 2f+1	servers,	assume	no	more	than	f	are	faulty	

• client	waits	for	f+1	matching	replies	

• if	only	f	are	faulty,	and	network	works	eventually,	must	get	
them!	

• what	is	wrong	with	design	2?



Issues	with	Design	2

• f+1	matching	replies	might	be	f	bad	nodes	&	1	good	

• so	maybe	only	one	good	node	got	the	opera&on!	

• next	opera&on	also	waits	for	f+1	

• might	not	include	that	one	good	node	that	saw	op1	

• example:	S1	S2	S3	(S1	is	bad)	

• everyone	hears	and	replies	to	write("A")	

• S1	and	S2	reply	to	write("B"),	but	S3	misses	it	

• client	can't	wait	for	S3	since	it	may	be	the	one	faulty	server	

• S1	and	S3	reply	to	read(),	but	S2	misses	it;	read()	yields	"A"	

• result:	client	tricked	into	accep&ng	out-of-date	state



Design	3

• 3f+1	servers,	of	which	at	most	f	are	faulty	

• client	waits	for	2f+1	matching	replies	

• f	bad	nodes	plus	a	majority	of	the	good	nodes	

• so	all	sets	of	2f+1	overlap	in	at	least	one	good	node	

• does	design	3	have	everything	we	need?



Refined	Approach

• let	us	have	a	primary	to	pick	order	for	concurrent	
client	requests	

• use	a	quorum	of	2f+1	out	of	3f+1	nodes	

• have	a	mechanism	to	deal	with	faulty	primary	

• clients	no&fy	replicas	of	each	opera&on,	as	well	as	primary;	if	
no	progress,	force	change	of	primary	

• replicas	exchange	info	about	ops	sent	by	primary	

• replicas	send	results	directly	to	client



PBFT:	Overview

• Normal	opera&on:	how	the	protocol	works	in	the	
absence	of	failures	

• View	changes:	how	to	depose	a	faulty	primary	and	
elect	a	new	one	

• Garbage	collec&on:	how	to	reclaim	the	storage	used	
to	keep	various	cer&ficates



Normal	Opera&on

• Three	phases:	

• Pre-prepare:	assigns	sequence	number	to	request	

• Prepare:	ensures	fault-tolerant	consistent	ordering	of	
requests	within	views	

• Commit:	ensures	fault-tolerant	consistent	ordering	of	
requests	across	views	

• Each	replica	maintains	the	following	state:	

• Service	state	

• Message	log	with	all	messages	sent/received	

• Integer	represen&ng	the	current	view	number



Client	issues	request

• o:	state	machine	opera&on	

• t:	&mestamp	

• c:	client	id



Pre-prepare

• v:	view	

• n:	sequence	number	

• d:	digest	of	m	

• m:	client’s	request



Pre-prepare	Receipt



Pre-prepare	Logging



Prepare



Prepare



Prepare	Cer&ficate

• P-cer&ficates	ensure	total	order	within	views	

• Replica	produces	P-cer&ficate(m,v,n)	iff	its	log	holds:	

• The	request	m	

• A	PRE-PREPARE	for	m	in	view	v	with	sequence	number	n	

• 2f	PREPAREs	from	different	backups	that	match	the	pre-prepare	

• A	P-cer&ficate(m,v,n)	means	that	a	quorum	agrees	with	assigning	
sequence	number	n	to	m	in	view	v	

• No	two	non-faulty	replicas	with	P-cer&ficate(m1,v,n)	and	P-
cer&ficate(m2,v,n)



P-cer&ficates	are	not	enough

• A	P-cer&ficate	proves	that	a	majority	of	correct	
replicas	has	agreed	on	a	sequence	number	for	a	
client’s	request	

• Yet	that	order	could	be	modified	by	a	new	leader	
elected	in	a	view	change



Commit



Commit	Cer&ficate

• C-cer&ficates	ensure	total	order	across	views	

• can’t	miss	P-cer&ficate	during	a	view	change	

• A	replica	has	a	C-cer&ficate(m,v,n)	if:		

• it	had	a	P-cer&ficate(m,v,n)	

• log	contains	2f	+1	matching	COMMIT	from	different	replicas	
(including	itself)	

• Replica	executes	a	request	aoer	it	gets	a	C-cer&ficate	
for	it,	and	has	cleared	all	requests	with	smaller	
sequence	numbers



Reply



BFT	Discussion

• Is	PBFT	prac&cal?	

• Does	it	address	the	concerns	that	enterprise	users	
would	like	to	be	addressed?



Bitcoin

• a	digital	currency	

• a	public	ledger	to	prevent	double-spending	

• no	centralized	trust	or	mechanism	<--	this	is	hard!



Why	digital	currency?

• might	make	online	payments	easier	

• credit	cards	have	worked	well	but	aren't	perfect	

• insecure	->	fraud	->	fees,	restric&ons,	reversals	

• record	of	all	your	purchases



What	is	hard	technically?

• forgery	

• double	spending	

• theo



Idea

• Signed	sequence	of	transac&ons	

• there	are	a	bunch	of	coins,	each	owned	by	someone	

• every	coin	has	a	sequence	of	transac&on	records	

• one	for	each	&me	this	coin	was	transferred	as	payment	

• a	coin's	latest	transac&on	indicates	who	owns	it	now



Transac&on	Record

• pub(user1):	public	key	of	new	owner	

• hash(prev):	hash	of	this	coin's	previous	transac&on	
record	

• sig(user2):	signature	over	transac&on	by	previous	
owner's	private	key	

• BitCoin	has	more	complexity:	amount	(frac&onal),	
mul&ple	in/out,	...



Transac&on	Example

1. Y	owns	a	coin,	previously	given	to	it	by	X:	

• T7:	pub(Y),	hash(T6),	sig(X)	

2. Y	buys	a	hamburger	from	Z	and	pays	with	this	coin	

• Z	sends	public	key	to	Y	

• Y	creates	a	new	transac&on	and	signs	it	

• T8:	pub(Z),	hash(T7),	sig(Y)	

3. Y	sends	transac&on	record	to	Z	

4. Z	verifies:	T8's	sig()	corresponds	to	T7's	pub()	

5. Z	gives	hamburger	to	Y



Double	Spending

• Y	creates	two	transac&ons	for	same	coin:	Y->Z,	Y->Q	

• both	with	hash(T7)	

• Y	shows	different	transac&ons	to	Z	and	Q	

• both	transac&ons	look	good,	including	signatures	and	
hash	

• now	both	Z	and	Q	will	give	hamburgers	to	Y



Defense

• publish	log	of	all	transac&ons	to	everyone,	in	same	
order	

• so	Q	knows	about	Y->Z,	and	will	reject	Y->Q	

• a	"public	ledger"	

• ensure	Y	can't	un-publish	a	transac&on



Strawman	Solu&on

• Assume	a	p2p	network	

• Peers	flood	new	transac&ons	over	“overlay”	

• Transac&on	is	acceptable	only	if	majority	of	peers	
think	it	is	valid	

• What	are	the	issues	with	this	scheme?



BitCoin	Block	Chain

• the	block	chain	contains	transac&ons	on	all	coins	

• many	peers,	each	with	a	complete	copy	of	the	chain	

• proposed	transac&ons	flooded	to	all	peers	

• new	blocks	flooded	to	all	peers	

• each	block:	hash(prevblock),	set	of	transac&ons,	nonce,	
current	wall	clock	&mestamp	

• new	block	about	~10	minutes	containing	new	xac&ons	

• payee	doesn't	verify	un&l	xac&on	is	in	the	block	chain



“Mining”	Blocks

• requirement:	hash(block)	has	N	leading	zeros	

• each	peer	tries	nonce	values	un&l	this	works	out	

• trying	one	nonce	is	fast,	but	most	nonces	won't	work	

• mining	a	block	not	a	specific	fixed	amount	of	work	

• one	node	can	take	months	to	create	one	block	

• but	thousands	of	peers	are	working	on	it	

• such	that	expected	&me	to	first	to	find	is	about	10	minutes	

• the	winner	floods	the	new	block	to	all	peers	

• there	is	an	incen&ve	to	mine	a	block	—	12.5bc



Timing

• start:	all	peers	know	&ll	B5	

• and	are	working	on	B6	(trying	different	nonces)	

• Y	sends	Y->Z	transac&on	to	peers,	which	flood	it	

• peers	buffer	the	transac&on	un&l	B6	is	computed	

• peers	that	heard	Y->Z	include	it	in	next	block	

• so	eventually	block	chain	is:	B5,	B6,	B7,	where	B7	
includes	Y->Z



Double	Spending

• what	if	Y	sends	out	Y->Z	and	Y->Q	at	the	same	&me?	

• no	correct	peer	will	accept	both	

• a	block	will	have	one	but	not	both	

• but	there	could	be	a	fork:	B6<-BZ	and	B6<-BQ



Forked	Chain

• each	peer	believes	whichever	of	BZ/BQ	it	saw	first	

• tries	to	create	a	successor	

• if	many	more	saw	BZ	than	BQ,	more	will	mine	for	BZ	

• so	BZ	successor	likely	to	be	created	first	

• even	otherwise	one	will	be	extended	first	given	significant	variance	in	
mining	success	&me	

• peers	always	switch	to	mining	the	longest	fork,	reinforcing	agreement



Double	Spending	Defense

• wait	for	enough	blocks	to	be	minted	

• if	a	few	blocks	have	been	minted,	unlikely	that	a	different	fork	will	
win	

• if	selling	a	high-value	item,	then	wait	for	a	few	blocks	before	shipping	

• could	aOacker	start	a	fork	from	an	old	block?	

• yes	--	but	fork	must	be	longer	in	order	for	peers	to	accept	it	

• if	the	aOacker	has	1000s	of	CPUs	--	more	than	all	the	honest	bitcoin	
peers	--	then	the	aOacker	can	create	the	longest	fork	

• system	works	only	if	no	en&ty	controls	a	majority	of	nodes



BitCoin	Summary

• Key	idea:	block	chain	

• Public	ledger	is	a	great	idea	

• Decentraliza&on	might	be	good	

• Mining	is	a	clever	way	to	avoid	sybil	aOacks	

• Ques&on:	Will	BitCoin	scale	well?


