Byzantine Fault
Tolerance




Fault Tolerance

® \We have so far assumed “fail-stop” failures (e.g.,
power failures or system crashes)

® In other words, if the server is up, it follows the




Larger Class of Failures

® Can one handle a larger class of failures?




\Yi[eYol=]

® Provide a replicated state machine abstraction

® Assume 2f+1 of 3f+1 nodes are non-faulty

S

A

In other words,




General Idea

® Primary-backup plus quorum system

® Executions are sequences of views




Attacker’s Powers

® Worst case: a single attacker controls the f faulty
replicas

® Supplies the codve that faulty replicas run




What faults cannot happen?

® No more than f out of 3f+1 replicas can be faulty

No client failure -- clients can never do anything bad
(or rather such behavior can be detected using

7







What could go wrong?

® Primary could be faulty!

® Could ignore commands; assign same sequence number to
different requests; skip sequence numbers; etc.

® Can equivocate or lie differently to different nodes




Example Use Scenario

® Arvind:

echo A > grade




Design 1

® client, n servers

® client sends request to all of them

® waits for all n to reply




Design 2

® let us have replicas vote

® 2f+1 servers, assume no more than f are faulty

@ client waits for f+1 matching repli

Y 4 ), i 2
el R e 2 S, )25 il AN RN i £k SN (AN N BRA 0
i ) ) R S iy ; Py g RO o i ke



Issues with Design 2

® f+1 matching replies might be f bad nodes & 1 good
® so maybe only one good node got the operation!
® next operation also waits for f+1

® might not include that one good node that saw op1

® example: S1 52 S3 (S1 is bad)




Design 3

® 3f+1 servers, of which at most f are faulty

® client waits for 2f+1 matching replies




Refined Approach

® let us have a primary to pick order for concurrent
client requests

® use a quorum of 2f+1 out of 3f+1 nodes

'® have a mechanism to deal with faulty primary




PBFT: Overview

® Normal operation: how the protocol works in the
absence of failures




Normal Operation

® Three phases:
® Pre-prepare: assigns sequence number to request

® Prepare: ensures fault-tolerant consistent ordering of
requests within views

® Commit: ensures fault-tolerant consistent ordering of




Client issues request




Pre-prepare




Pre-prepare Recelpt

Primary multicasts <<PRE-PREPARE,v,n,d>g,, m>

Primary k
Backup 1 \\
Backup 2 \
Backup 3

Correct backup
i accepfts
PRE-PREPARE if:

® PRE-PREPARE is well formed

@ iis inview v

@ i has not accepted another PRE-PREPARE
for v,n with a different d

@ n is between two water-marks 7. and H
(to prevent sequence number exhaustion)




Pre-prepare Logging




Prepare




Prepare




Prepare Certificate

® P-certificates ensure total order within views
® Replica produces P-certificate(m,v,n) iff its log holds:

® Therequestm

~® A PRE-PREPARE for m in view v with sequence number n




P-certificates are not enough

® A P-certificate proves that a majority of correct
replicas has agreed on a sequence number for a




—re e
¥




Commit Certificate

® C-certificates ensure total order across views

® can’t miss P-certificate during a view change

® A replica has a C-certificate(m,v,n) if:

® it had a P-certificate(m,v,n)







BFT Discussion

® Is PBFT practical?




a digital currency




Why digital currency?

® might make online payments easier




What is hard technically?

® forgery




ldea

® Signed sequence of transactions

® there are a bunch of coins, each owned by someone




Transaction Record

® pub(userl): public key of new owner

® hash(prev): hash of this coin's previous transaction

record
‘@ sig(user2): signature over transaction by previous




Transaction Example

1. Y owns a coin, previously given to it by X:
® T7:pub(Y), hash(T6), sig(X)

2. Y buys a hamburger from Z and pays with this coin

® 7 sends public key to Y




Double Spending

® Y creates two transactions for same coin: Y->Z, Y->Q

® both with hash(T7)




Defense

® publish log of all transactions to everyone, in same
order




Strawman Solution

® Assume a p2p network

® Peers flood new transactions over “overlay”




BitCoin Block Chain

® the block chain contains transactions on all coins
® many peers, each with a complete copy of the chain

® proposed transactions flooded to all peers

® new blocks flooded to all peers




“Mining” Blocks

® requirement: hash(block) has N leading zeros
® cach peer tries nonce values until this works out
® trying one nonce is fast, but most nonces won't work

® mining a block not a specific fixed amount of work

® one node can take months to create one block




® start: all peers know ftill BS

® and are working on B6 (trying different nonces)

® Y sends Y->Z transaction to peers, which flood it




Double Spending

® what if Y sends out Y->Z and Y->Q at the same time?

b

CARNSETy 3




Forked Chain

® each peer believes whichever of BZ/BQ it saw first
® ftries to create a successor

o ifymany‘m_ore saw BZ than BQ, more wiII mine for BZ




Double Spending Defense

® wait for enough blocks to be minted

® if a few blocks have been minted, unlikely that a different fork will
win

® if selling a high-value item, then wait for a few blocks before shipping

® could attacker start a fork from an old block?




BitCoin Summary

® Key idea: block chain

® Public ledger is a great idea




