Big Data Systems

Big Data Parallelism

® Huge data set

® crawled documents, web request logs, etc.

® Assume that you ran a large data analysis program

® it took 10 hours on 1 node

Challenges

® Parallelize application
® Where to place input and output data?

® \Where to place computation?

® How to communicate data? How to manage threads? How to
avoid network bottleneck?

Goal of MapReduce

® To solve these distribution/fault-tolerance issues once
in a reusable library

® To shield the programmer from having to re-solve them for
each program

Map Reduce

® Overview:

® Partition large data set into M splits

Details

® Input values: set of key-value pairs

® Job will read chunks of key-value pairs

® “key-value” pairs a good enough abstraction

® Map(key, value):

will execute this function o -value

g ity el o

n each key

® System

A

Count words in web-pages

Map(key, value) {
// key is url
/ value is the content of the url
For each word W in the content
Generate(W, 1);

Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {
/ key = url
// value = content
For each url, linking to target

® Question: how do we implement “join” in
MapReduce?

% 3 SN » i ik , i N
A

‘® Imagine you have a log table L and some other table R that

Implementation

® Depends on the underlying hardware: shared
memory, message passing, NUMA shared memory,
etc.

Inside Google:

MapReduce Input

® Where does input come from?

® Input is striped+replicated over GFS

Intermediate Data

® Where does MapReduce store intermediate data?

® On the local disk of the Map server (not GFS)

Output Storage

® Where does MapReduce store output?

Scaling

® Map calls probably scale

o »Reduce calls also probably scale

Fault Tolerance

® Main idea: map, reduce are deterministic, functional,
and independent

® Simply re-execute

Load Balance

® What if some Map machines are faster than others?

® Or some input splits take longer to process?

than machines

- ® Need more input splits

Discussion

® What are the constraints imposed on map and reduce

Map Reduce Criticism

® “Giant step backwards” in programming model

® Sub-optimal implementation

Comparison to Databases

® Huge source of controversy; claims:

® parallel databases have much more advanced data processing
support that leads to much more efficiency

® support an index; selection is accelerated

Where does MR win?

® Scaling

Map Reduce Performance

HDFS HDFS HDFS
write — — read write

—>g result 1
_>Q result 2

—> result 3
Input S e

Slow due to replication and disk 1/O,
but necessary for fault tolerance

In MapReduce, the only way to share data across
jobs is stable storage -> slow!

Spark Goal: In-Memory Data Sharing

one-time
processmg e

How to build a distributed memory abstraction
that is fault tolerant and efficient?

Resilient Distributed Datasets (RDDs)

® Restricted form of distributed shared memory

® Immutable, partitioned collection of records

® can only be built through coarse-grained deterministic
transformations (map, filter, join)

Fault-tolerance

one-time
__processing _ @
A / 4

S —

Granularity
of Updates

Coarse

Design Space

Network Memory
bandwidth bandwidth

K-V stores, : Best for
databases, @.» — transactional

RAMCloud workloads

Write Throughput

Example: Console Logs

Base RDDW
lines = spark.textFile(“hdfs://...”) E—

errors = lines.filter(lambda s: s.startswith(“ERROR”))
messages = errors.map(lambda s: s.split(“\t’)[2])

messages.persist()

AL

messages.filter(lambda s: “foo” in s).count()
messages.filter(lambda s: “bar” in s).count()

RDD Fault Tolerance

® Track lineage to recompute lost data

messages = textFile(...).filter(lambda s: s.contains(“ERROR™))

.map(lambda s: s.split(“\t’)[2])

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = contains(...) func = spilit(...)

RDD Implementation

® List of partitions

® Parent partition

® Narrow: depends on one parent (e.g., map)

RDD Computations

® Spark uses the lineage to schedule job

® Transformation on the same partition form a stage

® Joins, for example, are a stage boundary

Example: PageRank

1. Start each page with arank of 2
2. On each iteration, update each page’s rank to

ZiEneighbors ranl<i / |neighborsi|

Tinks // RDD of (url, neighbors) pairs
/

ranks / RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

What are the performance and fault tolerance issues in this code?

PageRank

® Co-locate ranks and links
® Each iteration creates two new RDDs: ranks, temp

® Long lineage graph!

® Risky for fault tolerance.

Tensorflow: System for ML

Three types of ML

® Large scale training

TensorFlow

® Common way to write programs

® Dataflow + Tensors

Background: NN Training

® Take input image

® Compute loss function (forward pass)

Dataflow Graph

\ Graph of Nodes, also called Operations or ops.
T

.

\} ’—’< Relu 3\\6
v

MatMul }/
o
—

I

System Architecture

® Parameter server architecture

® Stateless workers, stateful parameter servers (DHT)

® Commutative updates to parameter server

® Data parallelism vs. model parallelism

® Every worker works on the entire data flow graph (data

Synchrony

® Asynchronous execution is sometimes helpful
(stragglers)

Open Research Problems

® Automatic data placement

