
Big	Data	Systems



Big	Data	Parallelism

• Huge	data	set	

• crawled	documents,	web	request	logs,	etc.	

• Natural	parallelism:	

• can	work	on	different	parts	of	data	independently	

• image	processing,	grep,	indexing,	many	more



• Assume	that	you	ran	a	large	data	analysis	program	

• it	took	10	hours	on	1	node	

• it	took	1	hour	on	100	nodes	

• What	reasons	can	you	come	up	with	for	this	
“subopImal”	performance?		How	would	you	debug?



Challenges

• Parallelize	applicaIon	

• Where	to	place	input	and	output	data?	

• Where	to	place	computaIon?	

• How	to	communicate	data?		How	to	manage	threads?		How	to	
avoid	network	boOleneck?	

• Balance	computaIons		

• Handle	failures	of	nodes	during	computaIon	

• Scheduling	several	applicaIons	who	want	to	share	
infrastructure



Goal	of	MapReduce

• To	solve	these	distribuIon/fault-tolerance	issues	once	
in	a	reusable	library	

• To	shield	the	programmer	from	having	to	re-solve	them	for	
each	program	

• To	obtain	adequate	throughput	and	scalability	

• To	provide	the	programmer	with	a	conceptual	
framework	for	designing	their	parallel	program



Map	Reduce

• Overview:	

• ParIIon	large	data	set	into	M	splits	

• Run	map	on	each	parIIon,	which	produces	R	local	
parIIons;	using	a	parIIon	funcIon	R	

• Hidden	intermediate	shuffle	phase	

• Run	reduce	on	each	intermediate	parIIon,	which	produces	
R	output	files



Details

• Input	values:	set	of	key-value	pairs	

• Job	will	read	chunks	of	key-value	pairs	

• “key-value”	pairs	a	good	enough	abstracIon	

• Map(key,	value):	

• System	will	execute	this	funcIon	on	each	key-value	pair	

• Generate	a	set	of	intermediate	key-value	pairs	

• Reduce(key,	values):	

• Intermediate	key-value	pairs	are	sorted	

• Reduce	funcIon	is	executed	on	these	intermediate	key-
values



Count	words	in	web-pages

Map(key,	value)	{	
				//	key	is	url	
				//	value	is	the	content	of	the	url	
				For	each	word	W	in	the	content	
								Generate(W,	1);	
}	

Reduce(key,	values)	{	
				//	key	is	word	(W)	
				//	values	are	basically	all	1s	
				Sum	=	Sum	all	1s	in	values	

				//	generate	word-count	pairs	
				Generate	(key,	sum);		
}



Reverse	web-link	graph

Go	to	google	advanced	search:		
"find	pages	that	link	to	the	page:"	cnn.com	

Map(key,	value)	{	
				//	key	=	url	
				//	value	=	content	
				For	each	url,	linking	to	target	
								Generate(output	target,	url);	
}	

Reduce(key,	values)	{	
				//	key	=	target	url	
				//	values	=	all	urls	that	point	to	the	target	url	
				Generate(key,	list	of	values);	
}



• QuesIon:	how	do	we	implement	“join”	in	
MapReduce?	

• Imagine	you	have	a	log	table	L	and	some	other	table	R	that	
contains	say	user	informaIon	

• Perform	Join	(L.uid	==	R.uid)	

• Say	size	of	L	>>	size	of	R	

• Bonus:	consider	real	world	zipf	distribuIons



ImplementaIon

• Depends	on	the	underlying	hardware:	shared	
memory,	message	passing,	NUMA	shared	memory,	
etc.	

• Inside	Google:	

• commodity	workstaIons	

• commodity	networking	hardware	(1Gbps	at	node	level	and	
much	smaller	bisecIon	bandwidth)	

• cluster	=	100s	or	1000s	of	machines	

• storage	is	through	GFS



MapReduce	Input

• Where	does	input	come	from?	

• Input	is	striped+replicated	over	GFS	

• Typically,	Map	reads	from	a	local	disk	

• Tradeoff:	

• Good:	Map	reads	at	disk	speed	(local	access)	

• Bad:	only	2-3	choices	of	where	Map	task	can	be	run



Intermediate	Data

• Where	does	MapReduce	store	intermediate	data?	

• On	the	local	disk	of	the	Map	server	(not	GFS)	

• Tradeoff:	

• Good:	fast	local	access	

• Bad:	only	one	copy,	problem	for	fault-tolerance,	load-
balance



Output	Storage

• Where	does	MapReduce	store	output?	

• In	GFS:	replicated,	separate	file	per	Reduce	task	

• Output	requires	network	communicaIon	—	slow	

• Used	for	subsequent	MapReduce	tasks



Scaling

• Map	calls	probably	scale	

• Reduce	calls	also	probably	scale	

• But	must	be	mindful	of	keys	with	many	values	

• Network	may	limit	scaling	

• Stragglers	could	be	a	problem



Fault	Tolerance

• Main	idea:	map,	reduce	are	determinisIc,	funcIonal,	
and	independent	

• Simply	re-execute	

• What	if	a	worker	fails	while	running	map?	

• What	if	Map	has	started	to	produce	output,	then	
crashed?	

• What	if	a	worker	fails	while	running	Reduce?



Load	Balance

• What	if	some	Map	machines	are	faster	than	others?	

• Or	some	input	splits	take	longer	to	process?	

• Need	more	input	splits	than	machines	

• Stragglers:	

• load	balance	only	balances	newly	assigned	tasks	

• Always	schedule	mulIple	copies	of	very	last	tasks



Discussion

• What	are	the	constraints	imposed	on	map	and	reduce	
funcIons?	

• How	would	you	like	to	expand	the	capability	of	map	
reduce?



Map	Reduce	CriIcism

• “Giant	step	backwards”	in	programming	model	

• Sub-opImal	implementaIon	

• “Not	novel	at	all”	

• Missing	most	of	the	DB	features	

• IncompaIble	with	all	of	the	DB	tools



Comparison	to	Databases

• Huge	source	of	controversy;	claims:	

• parallel	databases	have	much	more	advanced	data	processing	
support	that	leads	to	much	more	efficiency	

• support	an	index;	selecIon	is	accelerated	

• provides	query	opImizaIon	

• parallel	databases	support	a	much	richer	semanIc	model		

• support	a	scheme;	sharing	across	apps	

• support	SQL,	efficient	joins,	etc.



Where	does	MR	win?

• Scaling	

• Loading	data	into	system	

• Fault	tolerance	(parIal	restarts)	

• Approachability



Map	Reduce	Performance

In MapReduce, the only way to share data across 
jobs is stable storage -> slow!



Spark	Goal:	In-Memory	Data	Sharing

How	to	build	a	distributed	memory	abstracIon		
that	is	fault	tolerant	and	efficient?



Resilient	Distributed	Datasets	(RDDs)

• Restricted	form	of	distributed	shared	memory	

• Immutable,	parIIoned	collecIon	of	records	

• can	only	be	built	through	coarse-grained	determinisIc	
transformaIons	(map,	filter,	join)	

• Efficient	fault	tolerance	through	lineage	

• Log	coarse-grained	operaIons	instead	of	fine-grained	data	
updates	

• RDD	has	enough	informaIon	about	its	derivaIon	

• Recompute	lost	parIIons	on	failure



Fault-tolerance



Design	Space



Example:	Console	Logs



RDD	Fault	Tolerance

• Track	lineage	to	recompute	lost	data



RDD	ImplementaIon

• List	of	parIIons	

• Parent	parIIon	

• Narrow:	depends	on	one	parent	(e.g.,	map)	

• Wide:	depends	on	several	parents	(e.g.,	join)	

• FuncIon	to	compute	(e.g.,	map,	join)	

• ParIIoning	scheme	

• ComputaIon	placement	hint



RDD	ComputaIons

• Spark	uses	the	lineage	to	schedule	job	

• TransformaIon	on	the	same	parIIon	form	a	stage	

• Joins,	for	example,	are	a	stage	boundary	

• Need	to	reshuffle	data	

• A	job	runs	a	single	stage	

• pipeline	transformaIon	within	a	stage	

• Schedule	job	where	the	RDD	parIIon	is



Example:	PageRank

What	are	the	performance	and	fault	tolerance	issues	in	this	code?



PageRank	

• Co-locate	ranks	and	links	

• Each	iteraIon	creates	two	new	RDDs:	ranks,	temp	

• Long	lineage	graph!	

• Risky	for	fault	tolerance.	

• One	node	fails,	much	recomputaIon	

• SoluIon:	user	can	replicate	RDD	

• Programmer	pass	"reliable"	flag	to	persist()	

• Replicates	RDD	in	memory	

• With	REPLICATE	flag,	will	write	to	stable	storage	(HDFS)



Tensorflow:	System	for	ML

• Open	source,	lots	of	developers	

• Used	in	RankBrain,	Photos,	SmartReply



Three	types	of	ML

• Large	scale	training	

• Low	latency	inference	

• TesIng	new	ideas	(single	node	prototyping	systems)



TensorFlow

• Common	way	to	write	programs	

• Dataflow	+	Tensors	

• Mutable	state	

• Simple	mathemaIcal	operaIons	

• AutomaIc	differenIaIon



Background:	NN	Training

• Take	input	image	

• Compute	loss	funcIon	(forward	pass)	

• Compute	error	gradients	(backward	pass)	

• Update	weights	

• Repeat



Dataflow	Graph



System	Architecture

• Parameter	server	architecture	

• Stateless	workers,	stateful	parameter	servers	(DHT)	

• CommutaIve	updates	to	parameter	server	

• Data	parallelism	vs.	model	parallelism	

• Every	worker	works	on	the	enIre	data	flow	graph	(data	
parallelism)	

• Model	and	layers	split	across	workers	(model	parallelism)	

• What	are	the	tradeoffs	of	different	types	of	
parallelism?



Synchrony

• Asynchronous	execuIon	is	someImes	helpful	
(stragglers)	

• Asynchrony	causes	consistency	problems	

• TensorFlow	pursues	synchronous	execuIon	

• But	adds	k	backup	nodes	to	address	straggler	problems



Open	Research	Problems

• AutomaIc	data	placement	

• Efficient	code	generaIon	from	data	flow	graph


