Big Data Systems

Big Data Parallelism

Huge data set

- crawled documents, web request logs, etc.
- Natural parallelism:
 - can work on different parts of data independently
 - image processing, grep, indexing, many more

• Assume that you ran a large data analysis program

- it took 10 hours on 1 node
- it took 1 hour on 100 nodes

 What reasons can you come up with for this "suboptimal" performance? How would you debug?

Challenges

• Parallelize application

- Where to place input and output data?
- Where to place computation?
- How to communicate data? How to manage threads? How to avoid network bottleneck?
- Balance computations
- Handle failures of nodes during computation
- Scheduling several applications who want to share infrastructure

Goal of MapReduce

- To solve these distribution/fault-tolerance issues once in a reusable library
 - To shield the programmer from having to re-solve them for each program
- To obtain adequate throughput and scalability
- To provide the programmer with a conceptual framework for designing their parallel program

Map Reduce

• Overview:

- Partition large data set into M splits
- Run map on each partition, which produces R local partitions; using a partition function R
 - Hidden intermediate shuffle phase
- Run reduce on each intermediate partition, which produces R output files

Details

Input values: set of key-value pairs

• Job will read chunks of key-value pairs

- "key-value" pairs a good enough abstraction
- Map(key, value):
 - System will execute this function on each key-value pair
 - Generate a set of intermediate key-value pairs
- Reduce(key, values):
 - Intermediate key-value pairs are sorted
 - Reduce function is executed on these intermediate keyvalues

Count words in web-pages

```
Map(key, value) {
    // key is url
    // value is the content of the url
    For each word W in the content
        Generate(W, 1);
}
```

```
Reduce(key, values) {
    // key is word (W)
    // values are basically all 1s
    Sum = Sum all 1s in values
```

```
// generate word-count pairs
Generate (key, sum);
```

Reverse web-link graph

```
Go to google advanced search:
"find pages that link to the page:" cnn.com
```

```
Map(key, value) {
    // key = url
    // value = content
    For each url, linking to target
        Generate(output target, url);
}
```

```
Reduce(key, values) {
    // key = target url
    // values = all urls that point to the target url
    Generate(key, list of values);
}
```

Question: how do we implement "join" in MapReduce?

- Imagine you have a log table L and some other table R that contains say user information
- Perform Join (L.uid == R.uid)
 - Say size of L >> size of R
 - Bonus: consider real world zipf distributions

Implementation

- Depends on the underlying hardware: shared memory, message passing, NUMA shared memory, etc.
- Inside Google:
 - commodity workstations
 - commodity networking hardware (1Gbps at node level and much smaller bisection bandwidth)
 - cluster = 100s or 1000s of machines
 - storage is through GFS

MapReduce Input

• Where does input come from?

- Input is striped+replicated over GFS
- Typically, Map reads from a local disk
- Tradeoff:
 - Good: Map reads at disk speed (local access)
 - Bad: only 2-3 choices of where Map task can be run

Intermediate Data

• Where does MapReduce store intermediate data?

• On the local disk of the Map server (not GFS)

• Tradeoff:

- Good: fast local access
- Bad: only one copy, problem for fault-tolerance, loadbalance

Output Storage

• Where does MapReduce store output?

- In GFS: replicated, separate file per Reduce task
- Output requires network communication slow
- Used for subsequent MapReduce tasks

Scaling

- Map calls probably scale
- Reduce calls also probably scale
 - But must be mindful of keys with many values
- Network may limit scaling
- Stragglers could be a problem

Fault Tolerance

- Main idea: map, reduce are deterministic, functional, and independent
 - Simply re-execute
- What if a worker fails while running map?
- What if Map has started to produce output, then crashed?
- What if a worker fails while running Reduce?

Load Balance

• What if some Map machines are faster than others?

- Or some input splits take longer to process?
- Need more input splits than machines
- Stragglers:
 - load balance only balances newly assigned tasks
 - Always schedule multiple copies of very last tasks

Discussion

- What are the constraints imposed on map and reduce functions?
- How would you like to expand the capability of map reduce?

Map Reduce Criticism

- "Giant step backwards" in programming model
- Sub-optimal implementation
- "Not novel at all"
- Missing most of the DB features
- Incompatible with all of the DB tools

Comparison to Databases

Huge source of controversy; claims:

- parallel databases have much more advanced data processing support that leads to much more efficiency
 - support an index; selection is accelerated
 - provides query optimization
- parallel databases support a much richer semantic model
 - support a scheme; sharing across apps
 - support SQL, efficient joins, etc.

Where does MR win?

Scaling

- Loading data into system
- Fault tolerance (partial restarts)
- Approachability

Map Reduce Performance

In MapReduce, the only way to share data across jobs is stable storage -> **slow**!

Spark Goal: In-Memory Data Sharing

How to build a distributed memory abstraction that is fault tolerant and efficient?

Resilient Distributed Datasets (RDDs)

Restricted form of distributed shared memory

- Immutable, partitioned collection of records
- can only be built through coarse-grained deterministic transformations (map, filter, join)
- Efficient fault tolerance through lineage
 - Log coarse-grained operations instead of fine-grained data updates
 - RDD has enough information about its derivation
 - Recompute lost partitions on failure

Fault-tolerance

Design Space

Example: Console Logs

RDD Fault Tolerance

• Track lineage to recompute lost data

RDD Implementation

- List of partitions
- Parent partition
 - Narrow: depends on one parent (e.g., map)
 - Wide: depends on several parents (e.g., join)
- Function to compute (e.g., map, join)
- Partitioning scheme
- Computation placement hint

RDD Computations

Spark uses the lineage to schedule job

- Transformation on the same partition form a stage
 - Joins, for example, are a stage boundary
 - Need to reshuffle data
- A job runs a single stage
 - pipeline transformation within a stage
- Schedule job where the RDD partition is

Example: PageRank

1. Start each page with a rank of 1 2. On each iteration, update each page's rank to $\Sigma_{i \in neighbors}$ rank_i / |neighbors_i|

```
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
  ranks = links.join(ranks).flatMap {
    (url, (links, rank)) =>
    links.map(dest => (dest, rank/links.size))
  }.reduceByKey(_ + _)
}
```

What are the performance and fault tolerance issues in this code?

PageRank

- Co-locate ranks and links
- Each iteration creates two new RDDs: ranks, temp
- Long lineage graph!
 - Risky for fault tolerance.
 - One node fails, much recomputation
- Solution: user can replicate RDD
 - Programmer pass "reliable" flag to persist()
 - Replicates RDD in memory
 - With REPLICATE flag, will write to stable storage (HDFS)

Tensorflow: System for ML

- Open source, lots of developers
- Used in RankBrain, Photos, SmartReply

Three types of ML

- Large scale training
- Low latency inference
- Testing new ideas (single node prototyping systems)

TensorFlow

- Common way to write programs
- Dataflow + Tensors
- Mutable state
- Simple mathematical operations
- Automatic differentiation

Background: NN Training

- Take input image
- Compute loss function (forward pass)
- Compute error gradients (backward pass)
- Update weights
- Repeat

Dataflow Graph

System Architecture

Parameter server architecture

- Stateless workers, stateful parameter servers (DHT)
- Commutative updates to parameter server
- Data parallelism vs. model parallelism
 - Every worker works on the entire data flow graph (data parallelism)
 - Model and layers split across workers (model parallelism)

What are the tradeoffs of different types of parallelism?

Synchrony

- Asynchronous execution is sometimes helpful (stragglers)
- Asynchrony causes consistency problems
- TensorFlow pursues synchronous execution
 - But adds k backup nodes to address straggler problems

Open Research Problems

• Automatic data placement

• Efficient code generation from data flow graph