
Flash:	an	efficient	and	
portable	web	server



High	Level	Ideas

• Lots	of	different	choices	on	how	to	express	and	effect	
concurrency	in	a	program	

• Paper	argues	that	event-driven	asynchronous	I/O	has	
least	overhead	and	greatest	scalability		

• But	Unix	has	poor	support	

• Server	performance	has	several	dimensions	

• QuesHon:	what	are	those?



Model	of	a	TCP	ConnecHon

• TCP	flows	provide	reliable	in-order	delivery	

• Flow	control	ensures	that	there	is	enough	buffer	
space	at	the	desHnaHon	

• CongesHon	control	reacts	to	packet	loss	

• Slow	start	allows	TCP	to	probe	for	available	
bandwidth	starHng	with	a	conservaHve	esHmate	of	~1	
packet	per	RTT	

• What	implicaHons	does	this	have	for	the	design	of	a	
web	server?



Model	of	a	Web	page

• Body	of	the	page	is	HTML	content	

• Includes	links	to	embedded	images	and	CSS	

• Embedded	HTML	in	the	form	of	iFrames	

• Also	includes	Javascipt	that	can	execute	at	the	client	
and	trigger	loads	of	other	types	of	content	

• Server	side	computaHon	in	the	form	of	CGI,	PHP,	etc.



Model	of	an	HTTP	Fetch

• Establish	TCP	connecHon	

• Send	HTTP	get	request	

• Server	reads	requested	content	from	the	file	system	

• Server	performs	server-side	computaHon	

• Server	sends	data	to	the	client	

• What	implicaHons	does	this	have	for	performance?	
for	re-designing	HTTP?	for	the	web-server?



HTTP	Improvements

• MulHple	concurrent	connecHons	per	client	

• Early	browsers:	4	concurrent	connecHons	

• HTTP/1.1	spec:	no	more	than	two	per	hostname	

• browsers	tend	to	do	~6	per	hostname/subdomain	

• Persistent	HTTP	connecHons	

• Single	congesHon	window	is	learned	for	the	session;	avoid	
slow	start	for	each		

• Fewer	packets,	less	memory	on	server	side,	lower	
overheads



HTTP	Improvements

• Pipelining	

• Send	mulHple	back	to	back	requests	on	a	single	persistent	
connecHon	without	waiHng	for	replies	

• Server	sends	replies	in	same	order	as	requests	

• Ability	to	mask	the	latency	of	HTTP	request/response	delay	

• SPDY	

• MulHplexes	many	HTTP	sessions	on	a	single	TCP	connecHon;		
virtualizes	many	TCPs	on	a	single	TCP	

• Eliminates	the	“in	the	same	order”	limitaHon	of	pipelining



Back	of	the	Envelope	CalculaHons

• What	would	you	guess	is	a	typical	web	page	load	in	
terms	of	latency?	

• How	would	you	determine	the	number	of	“acHve”	
web	requests	on	a	server?	

• Key	disHncHon:	“open	loop”	vs.	“closed	loop”	systems



Model	of	a	Processor

• Processes	incur	context	switching	costs,	occupy	memory	
(for	stack	frames)	

• User-level	threads	implemented	within	a	single	process;	
OS	knows	only	about	the	process	and	not	the	threads	
inside	of	it	

• Kernel	threads	implemented	as	OS	visible	enHHes;	
context	switching	handled	by	the	kernel	

• What	are	the	trade-offs	between	user-level	threads	and	
kernel	threads?		What	about	processes	and	kernel	
threads?



Model	of	a	Disk

• Disks	contain	tracks	(concentric	circles)	across	mulHple	surfaces	
(same	track	on	mulHple	surfaces	form	a	cylinder)	

• Access	costs:	

• Seek	to	the	appropriate	cylinder	

• Wait	for	the	appropriate	segment	to	rotate	underneath	the	disk	head	

• Performance	governed	by	mechanics	==>	improvements	are	
modest	over	Hme	

• single	disk	read	is	about	a	few	milliseconds	

• throughput	is	many	tens	of	mb/s	

• ImplicaHons:	need	to	overlap	disk	access	with	useful	work



Flash	Paper

• Discuss:	

• what	did	you	like	about	the	paper?	

• what	did	you	not	like	about	the	paper?	

• what	was	not	clear	from	the	paper?



Issues	in	Server-side	Handling

• StaHc	requests:	

• Read	data	from	file	and	send	into	network	

• Needless	copy	from	kernel	to	user-level,	back	into	kernel;	
sendfile()	opHmizes	this	

• For	small	files:	advantage	in	coalescing	HTTP	header	with	
the	data;	some	TCP	stacks	will	do	this,	but	for	the	rest	has	
to	be	done	manually



Dynamic	Requests

• Need	to	find	or	fire	up	a	helper	process/thread;	
potenHally	expensive	interpreter	warmup	

• Don’t	want	to	expose	the	server	itself	to	the	risk	of	
potenHally	buggy/blocking	CGI	environment	

• need	it	to	be	in	separate	process	

• Could	involve	DB	access	or	RPCs	to	middleware	--	
typically	a	mulH-Her	server	environment



Concurrency	in	a	web	server

• Why	do	we	want	to	exploit	it?	

• MulH-core:	want	to	be	able	to	exploit	mulHple	CPUs	
concurrently	

• MulHple	disks:	want	to	be	able	to	exploit	mulHple	disk	arms	
concurrently	

• Overcoming	latency	of	networks,	flow/congesHon	control	

• Want	to	be	working	on	a	different	request	while	
propagaHon	delay	of	other	requests	in	flight	(or	if	
buffers/windows	are	full)



OS	Issues

• PotenHally	blocking	system	calls	

• network	receive:	caller	blocks	unHl	data	is	available	

• network	send:	caller	block	unHl	send	buffer	has	space	available	

• network	accept:	caller	blocks	unHl	new	connecHon	arrives	

• PotenHally	high	latency	system	calls:	file	I/O	

• Core	issue:	some	way	to	either	

• have	mulHple	contexts	so	that	it’s	OK	if	they	are	blocked	

• prevent	blocking	(i.e.,	use	non-blocking	calls)



Concurrency	Architectures

• MulHple	process	(MP):	pool	of	idle	processes	

• MulHple	threads	(MT):	similar,	but	pool	of	idle	
threads	

• Single	process	Event	Driven	(ED)	

• This	paper:	a	hybrid



AMPED

• Approach:	

• Use	event	driven	(ED)	to	process	network	

• Use	MT	or	MP	to	process	disk,	helper	processes,	etc.	

• Connect	using	pipes	

• Benefits:	

• the	thing	that	is	likely	to	capture	the	most	blocking	
(networking	I/O)	is	the	thing	that	is	lightest-weight	

• have	shared-memory,	and	single	thread	tweaking	it,	so	
avoid	synchronizaHon	issues



Comparison	Metrics

• Concurrency/uHlizaHon:	

• Not	be	blocked	and	uHlize	all	resources	efficiently	

• SPED	blocks	on	disk	I/O	(also	bad	on	mulH-cores)	

• Overhead	

• Memory	overheads,	context	switching	costs,	inter-process	
communicaHon,	etc.		SPED	is	least	overhead	

• CoordinaHon	

• MT/MP	models	require	more	effort	for	applicaHon-wide	
informaHon	gathering	

• ApplicaHon-wide	data	structures	are	difficult	in	MP



Performance	Tricks

• Use	caches	for	as	many	things	as	possible:	

• name	translaHon	caches	

• response	header	caches	

• Maintain	memory	mapped	files	and	send	data	directly	
without	requiring	copies	

• Use	writev()	and	padding	to	minimize	overheads	

• Test	for	memory	residency	before	passing	task	to	
helper	

• Pre-created	CGI	helper	applicaHons



ContribuHons

• Discusses	issues	regarding	how	to	implement	a	high-
performance	networked	service	

• Some	of	the	design	choices	were	driven	by	
peculiariHes	of	the	Unix	interface	

• Key	takeaway:	need	to	reason	about	parallelism	and	
overheads	in	designing	services


