
Concurrency	Control	and	
Recovery	in	Databases



Outline

• Abstract	model	that	databases	try	to	provide	

• Typical	data	structures	used	in	the	database	

• Concurrency	control	and	recovery	process



Context

• Concurrency	is	needed	for	performance	(mul>-core,	
overlap	I/O)	

• Concurrency	creates	consistency	problems	
(“concurrency	control”	problem)	

• Failures	happen!	(“recovery”	problem)



Programming	Model

• Transac>on:	unit	of	program	execu>on	that	accesses/
updates	various	data	items	

• It	consists	of	all	opera>ons	between:	

• BEGIN	TRANSACTION	

• COMMIT	or	ABORT	(end	of	the	transac>on)	

• System	R	provides	a	few	addi>onal	ac>ons:	

• SAVE:	intermediate	results	inside	a	transac>on	

• UNDO:	rollback	to	the	previous	SAVE	point	

• READ_SAVE:	read	the	contents	of	the	last	SAVE	point



Transac>ons

• What	are	the	pros	and	cons	of	using	a	transac>on	
based	model?	

• System	could	fail	during	a	transac>on	

• What	are	the	different	kinds	of	failures?	

• Which	are	easy/hard?



Implemen>ng	Transac>ons

• Inconsistent	execu>ons	due	to	concurrency:	

• Lost	Update:	two	tasks	both	modify	the	same	data	

• Inconsistent	Read:	one	task	sees	some	but	not	all	of	the	
changes	made	by	another	task	

• Dirty	Read:	a	task	reads	data	updated	by	another	task	which	
will	eventually	abort



Formalizing	Correctness

• Atomic:	state	shows	either	all	the	effects	of	a	
transac>on	or	none	of	them	

• Consistent:	transac>on	moves	only	between	states	
where	integrity	holds	

• Isolated:	effects	of	transac>ons	is	the	same	as	
transac>ons	running	one	aZer	another	

• Durable:	once	a	transac>on	has	commi[ed,	its	effects	
remain	in	the	database



ACID:	Notes

• Consistency:	database	sa>sfied	integrity	constraints	

• Account	numbers	are	unique	

• Sum	of	debits	and	credits	is	zero	

• Introduced	as	a	requirement,	but	today	we	
understand	it	as	a	consequence	of:	

• correct	programs	

• atomicity	and	isola>on	guarantees



Serializability

• Conflic>ng	opera>ons:	

• two	updates	to	the	same	loca>on	

• an	update	and	an	access	to	the	same	loca>on	

• Serializability	check:	

• Order	conflic>ng	opera>ons	from	different	transac>ons	

• All	ordering	constraints	between	two	transac>ons	should	go	
in	the	same	direc>on	(i.e.,	T1’s	opera>ons	happened	before	
T2’s	opera>ons	or	the	other	way	around)	

• When	do	databases	use	the	serializability	check?



Locking

• Two	approaches	to	concurrency	control:	

• Use	locking	to	ensure	mutual	access	

• Op>mis>c	concurrency	control:	don’t	use	lock	and	check	for	
inconsistencies	when	the	opera>on	commits	

• What	are	the	tradeoffs	between	the	two	forms	of	
concurrency	control?



Locking	Concepts

• Well-formed	transac>ons:	

• Transac>on	holds	lock	(read	or	write	lock)	on	the	object	when	
it	performs	the	corresponding	opera>on	

• Not	sufficient	for	serializability	

• Two-phase	locking:	transac>ons	have	two	phases	

• Growing	phase:	in	which	transac>on	is	acquiring	locks	

• Shrinking	phase:	in	which	locks	are	released	

• Need	to	deal	with	deadlocks	using	tradi>onal	schemes



Recovery

• Ques>on:	

• What	data	structures	are	needed	for	recovery?	

• Feel	free	to	propose	other	op>ons	than	what	is	discussed	in	
the	paper/chapter	



Data	Structures

• Two	kinds	of	storage:	vola>le	(memory)	and	non-
vola>le	(disk)	

• Buffer	pool:	accessed	or	modified	pages	in	memory	

• Pages	on	disk	

• current	version	and	possibly	a	shadow	version	

• Log	of	opera>ons	on	disk	(typically	a	write-ahead	log)



Stable	Storage
• STEAL:	buffer	manager	allows	the	disk	version	to	be	updated	

even	before	the	transac>on	is	completed	

• NO-STEAL:	all	updates	made	aZer	the	transac>on	is	completed	

• FORCE:	all	updates	are	reflected	on	disk	before	the	transac>on	
is	allowed	to	commit	

• NO-FORCE:	transac>on	commits	before	updates	are	on	disk	

• Ques>on:	

• Why	do	we	want	STEAL?			

• Why	do	we	want	NO-FORCE?



Logging

• UNDO:	rollback	updates	on	disk	for	uncommi[ed	
transac>ons	

• REDO:	make	updates	to	disk	for	commi[ed	transac>ons	

• Log	is	used	to	keep	track	of	what	to	UNDO	and	REDO	

• Log	records	contain	a	Log	Sequence	Number	(LSN);	data	
values	(on	disk)	keep	track	of	the	LSN	of	update



Write	Ahead	Logging

• All	log	records	pertaining	to	an	updated	page	are	
wri[en	to	disk	before	the	page	itself	is	modified	on	
disk	

• Transac>on	is	not	considered	commi[ed	un>l	all	of	its	
log	records	are	on	disk



Logging

• Two	types	of	logging:	

• Physical:	For	every	log	entry,	maintain	the	“before	image”	
and	“aZer	image”	of	the	updated	data	value	

• Logical:	Keep	track	of	what	opera>on	was	performed	(say	
increment	of	a	value,	inser>on	of	a	new	tuple	in	a	list,	etc.)	

• What	are	the	tradeoffs	between	the	two	types	of	
logging?



Data	Structures
• Transac>on	Table:	contains	status	informa>on	of	ac>ve	

transac>ons	

• Dirty	pages	table:	

• entries	contain	“recoveryLSN”:	LSN	of	log	record	that	made	the	
page	dirty	

• Log	records	of	a	transac>on:	

• contain	prevLSN	linking	previous	opera>ons	of	the	transac>on	

• Checkpoint	records:	

• currently	ac>ve	transac>ons	

• dirty	pages	corresponding	to	these	ongoing	transac>ons



Recovery

• Three	stages:	

• Analysis	

• REDO	phase	

• UNDO	phase



Analysis

• Determine	the	point	to	start	the	REDO	pass	

• Determine	which	pages	could	have	been	dirty	at	the	
>me	of	the	crash	to	avoid	unnecessary	I/O	

• Determine	which	transac>ons	had	not	commi[ed



REDO

• Minimize	disk	I/Os	

• If	affected	page	is	not	on	the	Dirty	Page	Table,	then	don’t	
REDO	

• If	affected	page	is	in	the	Dirty	Page	Table,	then	if	the	
recoveryLSN	in	the	page	table	is	greater	than	the	LSN	of	the	
record	being	checked,	then	don’t	REDO	

• Check	LSN	on	the	page	on	the	disk.		If	pageLSN	is	greater	
than	or	equal	to	the	LSN,	then	don’t	REDO



UNDO

• Go	back	and	unroll	all	uncommi[ed	transac>ons	

• Handle	failures	during	recovery:	

• Maintain	“Compensa>on	Log	Record”	to	keep	track	of	what	
has	been	undone	

• Store	this	also	in	the	log


