
Clocks,	Event	Ordering,	and	Global	
Predicate	Computa:on

Distributed	Make

• Distributed	file	servers	holds	source	and	object	files	

• Clients	specify	modifica:on	:me	on	uploaded	files	

• Use	:mestamps	to	decide	what	needs	to	be	rebuilt	

• if	object	O	depends	on	source	S,	and		

• O.:me	<	S.:me,	rebuild	O	

• What	can	go	wrong?

Two	Approaches

• Synchronize	physical	clocks	

• Logical	clocks

• Design	a	scheme	that	synchronizes	physical	clocks	

• What	do	you	think	are	the	sources	of	inaccuracy?	

• Why	is	clock	synchroniza:on	hard?

Varia:ons	in	Network	Latency

• Latency	can	be	unpredictable	and	has	a	lower	bound

• Simple	approach:	Designated	server	broadcasts	:me,	
Clients	receive	broadcast,	set	their	clock	to	the	value	
in	the	message	+	minimum	delay

Interroga:on	Based	Approach

• Client	sends	a	roundtrip	message	to	query	server’s	:me	

• Set’s	client’s	clock	to	server’s	clock	+	half	of	RTT

• Worst	case	error	(if	we	know	the	min	latency):	(T2-T0)/2	-	min

Logical	Clocks

• another	way	to	keep	track	of	:me	

• based	on	the	idea	of	causal	rela:onships	between	
events	

• doesn’t	require	any	physical	clocks

Events	and	Histories

• Processes	execute	sequences	of	events	

• Events	can	be	of	3	types:	local,	send,	and	receive	

• The	local	history	of	a	process	is	the	sequence	of	
events	executed	by	process	

Ordering	events

• Observa:on	1:		
• Events	in	a	local	history	are	totally	ordered	

• Observa:on	2:		
• For	every	message,		send	precedes	receive

time
pi

time
pi

time

m

pj

Lamport	Clock:	Increment	Rules

e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q), LC(ei
p)) + 1

Timestamp with m TS(m) = LC(send(m))

Discussion

• What	are	the	strengths	and	limita:ons	of	Lamport	
clocks?

Example	of	Global	Predicate

• Sebng:	Locks	in	distributed	system	

• Objects	locked	by	nodes	and	moved	to	the	node	that	is	
currently	modifying	it	

• Nodes	reques:ng	the	object/lock,	send	a	message	to	the	
current	node	locking	it	and	blocks	for	a	response	

• Global	predicate:	detect	deadlocks

Global	States	&	Clocks

• Need	to	reason	about	global	states	of	a	distributed	system	

• Global	state:	processor	state	+	communica:on	channel	
state	

• Consistent	global	state:	causal	dependencies	are	captured	

• Use	virtual	clocks	to	reason	about	the	:ming	rela:onships	
between	events	on	different	nodes

Space-Time	diagrams

A	graphic	representa:on	of	a	distributed	execu:on

time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

Cuts

A	cut	C	is	a	subset	of	the	global	history	of	H	

The	fron:er	of	C	is	the	set	of	events		

p1

p2

p3

e
c1

1
, e

c2

2
, . . . e

cn

n

Consistent	cuts	and	
consistent	global	states

• A	cut	is	consistent	if	

• A	consistent	global	state	is	one	corresponding	to	a	
consistent	cut	

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C

What							sees

Not	a	consistent	global	state:	the	cut	contains	the	event	
corresponding	to	the	receipt	of	the	last	message	by				
but	not	the	corresponding	send	event

p1

p2

p3

p3

p0

Global	Consistent	States

• Can	we	use	Lamport	Clocks	as	part	of	a	mechanism	to	
get	globally	consistent	states?

• Develop	a	simple	global	snapshot	protocol	

• Refine	protocol	as	we	relax	assump:ons		

• Record:	
1. processor	states	
2. channel	states		

• Assump:ons:	
1. FIFO	channels	
2. Each							:mestamped	with	

Global	Snapshot

m T (send(m))

Snapshot	I

i. selects

ii. sends “take a snapshot at ” to all processes

iii.when clock of reads then
records its local state
sends an empty message along its outgoing channels
starts recording messages received on each of incoming
channels
stops recording a channel when it receives first message
with timestamp greater than or equal to

p0 tss

p0 tss

tss

tss

pi

σi

p

Snapshot	II
processor selects

 sends “take a snapshot at ” to all processes; it waits for
all of them to reply and then sets its logical clock to

when clock of reads then

records its local state

sends an empty message along its outgoing channels

starts recording messages received on each incoming
channel

stops recording a channel when receives first message
with timestamp greater than or equal to

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing	synchrony

Process does nothing
for the protocol
during this time!

pi

 take a
snapshot at Ω

empty message:
TS(m) ≥ Ω

monitors

channels records

local state σi

sends empty message:
TS(m) ≥ Ω

Snapshot	III
processor sends itself “take a snapshot “

when receives “take a snapshot” for the first time from :

records its local state

sends “take a snapshot” along its outgoing channels

sets channel from to empty

starts recording messages received over each of its other incoming
channels

when receives “take a snapshot” beyond the first time from :

stops recording channel from

when has received “take a snapshot” on all channels, it sends
 collected state to and stops.

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Same	problem,	different	approach

• Monitor	process	does	not	query	explicitly	

• Instead,	it	passively	collects	informa:on	and	uses	it	to	
build	an	observa:on.	

(reactive architectures, Harel and Pnueli [1985])

An	observa:on	is	an	ordering	of	events	of	the	distributed	
computa:on	based	on		the	order	in	which	the	receiver	is	
no:fied	of	the	events.

Update	rules

pi

pi

ei

m

ei

Message is
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

Opera:onal	interpreta:on

= no. of events executed by up to and including

= no. of events executed by that happen before of

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

VC	proper:es:
event	ordering

Given two vectors and , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition:

 Given of and of , where

Concurrency

 Given of and of , where

V V
′

V < V
′ ≡ (V ̸= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ∥ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i ̸= j

ei pi pjej i ̸= j

e → e
′
≡ V C(e) < V C(e′)

The	protocol

 maintains an array of counters

 where is the last
message delivered from

Rule: Deliver from as soon as both of
the following conditions are satisfied:

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k ̸= j

m pj

Summary

• Lamport	clocks	and	vector	clocks	provide	us	with	
good	tools	to	reason	about	:ming	of	events	in	a	
distributed	system	

• Global	snapshot	algorithm	provides	us	with	an	
efficient	mechanism	for	obtaining	consistent	global	
states

