
Consensus Routing: The Internet as a Distributed System

John P. John∗ Ethan Katz-Bassett∗ Arvind Krishnamurthy∗ Thomas Anderson∗

Arun Venkataramani†

Abstract
Internet routing protocols (BGP, OSPF, RIP) have tra-

ditionally favored responsiveness over consistency. A
router applies a received update immediately to its for-
warding table before propagating the update to other
routers, including those that potentially depend upon the
outcome of the update. Responsiveness comes at the cost
of routing loops and blackholes—a router A thinks its
route to a destination is via B but B disagrees. By favor-
ing responsiveness (a liveness property) over consistency
(a safety property), Internet routing has lost both.

Our position is that consistent state in a distributed sys-
tem makes its behavior more predictable and securable.
To this end, we present consensus routing, a consistency-
first approach that cleanly separates safety and liveness
using two logically distinct modes of packet delivery: a
stable mode where a route is adopted only after all depen-
dent routers have agreed upon it, and a transient mode that
heuristically forwards the small fraction of packets that
encounter failed links. Somewhat surprisingly, we find
that consensus routing improves overall availability when
used in conjunction with existing transient mode heuris-
tics such as backup paths, deflections, or detouring. Ex-
periments on the Internet’s AS-level topology show that
consensus routing eliminates nearly all transient discon-
nectivity in BGP.

1 Introduction
Internet routing, especially interdomain routing, has tra-
ditionally favored responsiveness, i.e., how quickly the
network reacts to changes, over consistency, i.e., ensuring
that packets traverse adopted routes. A router applies a re-
ceived update immediately to its forwarding table before
propagating the update to other routers, including those
that potentially depend upon the outcome of the update.
Responsiveness comes at the cost of availability: a router
A thinks its route to a destination is via B but B disagrees,
either because 1) B’s old route to the destination is via
A, causing loops, or 2) B does not have a current route
to the destination, causing blackholes. BGP updates are
known to cause up to 30% packet-loss for two minutes or
more after a routing change, even though usable physical
routes exist [26]. Further, transient loops account for 90%
of all packet loss according to a Sprint network study [16].
Even a recovering link can cause unavailability lasting

∗Dept. of Computer Science, Univ. of Washington, Seattle.
†University of Massachusetts Amherst.

tens of seconds due to an inconsistent view among routers
in a single autonomous system [44].

Our position is that the lack of consistency is at the root
of bigger problems in Internet routing beyond availabil-
ity. First, protocol behavior is complex and unpredictable
as routers by design operate upon inconsistent distributed
state, e.g., by forwarding packets along loops. There is
no indicator of when, if at all, the network converges to
a consistent state. Second, unpredictable behavior makes
the system more vulnerable to misconfiguration or abuse,
as it is difficult to distinguish between expected behav-
ior and misbehavior. Third, unpredictable behavior sti-
fles innovation in the long term, e.g., network operators
are reluctant to adopt protocol optimizations such as in-
terdomain traffic engineering [1] because they have to
worry about its poorly understood side-effects. Perhaps
most tellingly, despite a decade of research investigating
the complex dynamics of interdomain routing, the goal
of a simple, practical routing protocol that allows gen-
eral routing policies and achieves high availability has
remained elusive.

Our primary contribution, consensus routing, achieves
the above goal. The key insight is to recognize consis-
tency as a safety property and responsiveness as a liveness
property and systematically separate the two design con-
cerns, thereby borrowing an old lesson from distributed
system design. Consistency safety means that a router
forwards a packet strictly along the path adopted by the
upstream routers unless the packet encounters a failed
link. Liveness means that the system reacts quickly to
failures or policy changes. Separating safety and liveness
improves end-to-end availability, and, perhaps more im-
portantly, makes system behavior simple to describe and
understand.

Consensus routing achieves this separation using two
logically distinct modes of packet delivery: 1) A stable
mode ensures that a route is adopted only after all depen-
dent routers have agreed upon a consistent view of global
state. Every epoch, routers participate in a distributed
snapshot and consensus protocol to determine whether or
not updates are complete, i.e., they have been processed
by every router that depends on the update. The output of
the consensus serves as an explicit indicator that routers
may adopt a consistent set of routes processed before the
snapshot. 2) A transient mode ensures high availability
when a packet encounters a router that does not possess a
stable route, either because the corresponding link failed

or the consensus protocol to compute a stable route has
not yet terminated. In this case, the router explicitly marks
it as a transient packet, and uses local information about
available routes heuristically to forward the packet to the
destination. We show that consensus routing can cleanly
accommodate a number of existing transient forwarding
heuristics such as backup routes [24], deflections [47],
and detours [46] to provide near-perfect availability in a
policy-compliant manner.

Consensus routing is similar in spirit to recent work on
intradomain routing protocols that advocate the separa-
tion of route computation from packet forwarding [27].
However, we address this challenge for interdomain rout-
ing where ASes can run arbitrary and private policy en-
gines to select routes, thereby precluding the use of logi-
cally centralized schemes for route computation. Consen-
sus routing needs no change to BGP, residing as a layer
on top of existing BGP implementations. A consensus
router logs the output of the BGP policy engine locally,
and uses the global consensus algorithm only to determine
the most recent consistent BGP state; thus, an AS does not
disclose any more information about its preferences than
with BGP. We believe the consensus routing design also
applies to intradomain routing without the need for a cen-
tral policy engine.

In summary, our primary contribution is a simple, prac-
tical routing protocol that allows general policies and
achieves high availability. To this end, we present
1. Consensus routing, a policy routing protocol that sys-

tematically separates safety and liveness concerns us-
ing two modes: a stable mode to ensure consistency,
and a transient mode to optimize availability.

2. Provable guarantees that packets traverse adopted
loop-free routes under general policies.

3. Experimental results based on the current Internet
graph that show that consensus routing achieves high
availability amidst link failures and policy changes.

4. A proof-of-concept prototype of consensus routing
based on XORP [19] showing that the proposed de-
sign is practical and incurs little processing overhead.

2 A case for consistency
We illustrate several examples where inconsistent for-
warding tables cause transient unavailability in inter- and
intra-domain routing. These examples are well known,
and while some solutions have been proposed to address
each, our contribution is a comprehensive but simple so-
lution to the suite of problems. In each case, the unavail-
ability could last several tens of seconds (and sometimes
minutes) due to BGP message processing and propagation
delays [26]. For an introduction to BGP, refer to [42].

1. BGP link failures: Figure 1 shows how link failures
cause transient loops in BGP. Bold lines show selected

2

4

31

5

Figure 1: Link failure causing BGP loops at 2 and 3.

paths. If link 4-5 goes down, 4 would immediately send
a withdrawal to 2 and 3. However, because both 2 and
3 know of alternate paths 3-4-5 and 2-4-5 respectively,
they start to forward traffic to each other causing loops.
The MRAI timer prevents 2 and 3 from advertising the
new paths even though they have adopted them to for-
ward traffic. The timer is believed necessary to prevent
a super-exponential blowup in message overhead, and its
recommended value is 30 seconds. Eventually, when the
timer expires, both 2 and 3 discover the alternate path to
5 through 1 that existed all along.

2

4

31

5

6

Figure 2: Policy change causing BGP loops at 2 and 3 when 4
withdraws a prefix from 2 and 3 but not 6.

2. BGP policy change: Figure 2 shows an example of
how policy changes cause routing loops. AS4 may wish
to engineer its traffic by withdrawing a prefix from 2 and
3 while continuing to advertise it to 6 for load balancing
purposes [39]. (For instance, by diverting traffic to arrive
from 6 instead of 2, internal congestion within AS4 might
be decreased.) If 2 and 3 each prefer the other over 6, rout-
ing loops would result like in Figure 1. A similar situa-
tion also occurs if 5 wishes to switch its primary (backup)
provider from 4 (1) to 1 (4); in this case, 5 is forced to
either withdraw the route advertised (and potentially be-
ing used) to 4, or wait for a reliable indicator of when
all traffic has completely moved over to the new primary
provider 1. Other gadgets involving longer unavailability
due to policy changes may be found in [31, 35].

3. iBGP link recovery: Figure 3 shows a transient black-
hole caused by iBGP inconsistency. Routers A, B, and
C belong to AS1 while D belongs to the adjacent AS2.
iBGP is a BGP protocol that runs between routers inside

D

AS1
AS2

AS3

P

C

A

B
D

AS1
AS2

AS3

P

C

A

B

zzz...

Figure 3: iBGP link recovery causing blackholes.

an AS (in this case, A, B, and C). All routers route via D
to the destination P in AS3. Suppose the previously failed
link A-P recovers and is preferred by all AS1 routers over
the route via AS2. If the AS1 routers all peer with each
other, C will withdraw C-D-P from both A and B when
it hears from A that A-P is available, but will leave it to
A to announce AP to B directly because of the full-mesh
design. If A is waiting upon its iBGP timer, B experiences
a transient blackhole. The current BGP spec recommends
an iBGP timer shorter than interdomain timers, and typ-
ical values range from 5-10 seconds. Wang et al. [44]
note that such blackholes can cause packet loss for tens
of seconds. If AS1 routers use route reflection as opposed
to full-mesh, similar consistency problems can cause un-
availability [15, 3].

2

0

31

Figure 4: BGP policy cycles causing forwarding loops

4. BGP policy cycles: Figure 4 shows the classic ”bad
gadget” [26, 14] involving cyclic preference dependen-
cies. Each of ASes 1, 2, and 3 prefer to route via its
clockwise neighbor over the direct path to AS 0, and does
not prefer a path of length 3. The routes will never stabi-
lize because there is no configuration where no AS wants
to change its route to AS 0. Furthermore, the system
goes through many repeated states involving routing loops
causing chronic unavailability.

Summary Some of the specific scenarios illustrated
above can be alleviated using known solutions. For ex-
ample, root cause notification (RCN) [34, 24] can prevent
routing loops caused by link failures: in Figure 1, if 4 im-
mediately floods the cause of the withdrawal—the failure
of the link 4-5—to 2 and 3, they can prevent the loop.
The example in Figure 2 can be addressed if 4 explicitly
reveals its intended traffic engineering policy to 2, 3, and
6. However, it appears difficult to extend RCNs to pre-
vent loops or blackholes induced by more sophisticated

policy changes, as also noted by [34, 31]. As a result,
most ISPs avoid interdomain traffic engineering whenever
possible[1]. The iBGP example shown in Figure 3 can be
alleviated using an approach similar to RCP that computes
consistent routes in a logically centralized manner. Cyclic
policy preferences as in Figure 4 are believed to be rare;
Gao and Rexford [9] showed that if ASes restrict their
policies to satisfy the “valley-free” and “prefer-customer”
properties, such unstable configurations cannot occur. In
practice, ASes may have more general policies that do not
obey these restrictions [38].

Our goal is to design a single mechanism that can ad-
dress all of these consistency problems in policy routing.
Our solution, consensus routing, is a simple decentralized
routing protocol that allows ASes to adopt general routing
policies while ensuring high availability.

3 Consensus routing overview
The key insight in consensus routing is to cleanly sepa-
rate safety and liveness concerns in policy routing. Safety
means that a router forwards a packet strictly along the
path adopted by the upstream routers unless if the adopted
route encounters a failed link or router. Note that inter-
domain routing today does not satisfy this property, e.g.,
packets may traverse a loopy route even though no router
has adopted that route. Liveness means that the network
1) reacts quickly to failures or policy changes, and 2) en-
sures high end-to-end availability defined as the probabil-
ity that a packet is delivered successfully. By separating
safety and liveness concerns, consensus routing achieves
high availability while allowing ASes to exercise arbitrary
routing policies.

Consensus routing achieves this separation using two
simple ideas. First, we run a distributed coordination al-
gorithm to ensure that a route is adopted only after all
dependent routers have agreed upon a globally consistent
view of global state. The adopted routes are consistent,
i.e., if a router A adopts a route to a destination via an-
other router B, then B adopts the corresponding suffix as
its route to the destination. Note that consistency implies
loop-freedom. Second, we forward packets using one of
two logically distinct modes: 1) a stable mode that only
uses consistent routes computed using the coordination
algorithm, and 2) a transient mode that heuristically for-
wards packets when a stable route is not available.

In BGP, a router processes a received update using its
policy engine, adopts the new route in its forwarding ta-
ble, and forwards the change to its neighbors. In com-
parison, a consensus router simply logs the new route
computed by the policy engine. Periodically, all routers
engage in a distributed coordination algorithm that deter-
mines the most recent set of complete updates, i.e., up-
dates that have been processed by every router whose for-
warding behavior depends upon the updates. The coordi-

nation is based on classical distributed snapshot [5] and
consensus [28] algorithms. The routers use the output of
the coordination to compute a set of stable forwarding ta-
bles (SFTs) that are guaranteed to be consistent.

Packet forwarding by default occurs in the stable mode
using SFTs. When routing changes are caused by pol-
icy, the entire system simply transitions from the old set
of SFTs to a new set of consistent SFTs without causing
routing loops and packet loss. When the stable route is
unavailable—because the next-hop router is not accessi-
ble due to a failure and the resulting update to recover
from failure is incomplete—packet forwarding switches
to the transient mode. The router explicitly marks the
packet as a transient packet and fails over to heuristics
such as backup routes, deflections, and detour routes to
deliver the packet successfully with high probability.

4 Stable Mode
The distributed coordination proceeds in epochs and en-
sures that, in each epoch, all ASes have a consistent set
of SFTs. The kth epoch consists of the following steps,
explained in detail in subsequent subsections:
1. Update log: Each router processes and logs route up-

dates (without modifying its SFT) until some node(s)
calls for the (k + 1)th distributed snapshot.

2. Distributed snapshot: The ASes take a distributed
snapshot of the system. The snapshot is a globally
consistent view of all the updates in the system. Some
of them may be complete, and some may still be in
progress, e.g., updates that were in transit to a router
when the snapshot was taken, or were waiting on lo-
cal timers to expire before being sent to neighboring
routers.

3. Frontier computation:

(a) Aggregation: Each AS sends its snapshot report
consisting of received updates, with some of them
marked incomplete, to consolidators, a set of
routers designated to aggregate snapshot reports
into a global view. Tier-1 ASes are good candi-
dates for consolidators.

(b) Consensus: The consolidators execute Paxos to
agree upon the global view, and use the view to
compute the set of updates that are globally in-
complete, i.e., not been processed by all ASes
whose routing state would be invalidated by the
updates.

(c) Flood: The consolidators flood the set of incom-
plete updates I and the set of ASes S that success-
fully responded to the snapshot, back to all ASes.

4. SFT computation: Each AS uses this set of global in-
complete updates and its local log of received updates
to compute its (k + 1)th SFT, adopting routes carried
in the most recent complete update (i.e., not in I) and
only involving ASes in S.

5. View change:

(a) Versioning: At epoch boundaries, each router
maintains both the kth and the (k+1)th SFT. Each
packet is marked with a bit indicating which SFT
must be used to forward the packet.

(b) Garbage collection: ASes discard the kth SFT af-
ter the (k + 1)th epoch has ended, i.e., when the
(k + 2)th snapshot is called for and distributed.

Sections 4.1–4.5 elaborate the above five steps and 4.6
lists safety and liveness guarantees. ASes are assumed
failure-prone but not malicious. We discuss the impli-
cations of malicious ASes in Section 7. Before that, we
briefly comment on the feasibility of the approach.

First, not all ASes need participate in the protocol in
order to ensure loop-freeness. A stub AS can not be in-
volved in a loop since no AS transits traffic through it. So,
only transit ASes (≈ 3000) participate in the protocol, an
order of magnitude reduction compared to the total num-
ber of ASes (≈ 25000).

Second, ASes do not send all received updates to the
consolidators. Instead, they only send identifiers for up-
dates received in the previous epoch, and the consolida-
tors send back a subset of the identifiers corresponding to
updates deemed incomplete. Our evaluation (§ 6) shows
that the additional overhead due to consensus routing is a
small fraction of BGP’s current overhead.

Third, a small number of consolidators (e.g., about ten
tier-1 ASes) suffice. The consolidators run a consensus
algorithm [28] once every epoch, whose communication
overhead is a small fraction of the dissemination overhead
above.

4.1 Router State, Triggers, Update Processing

Router State: A consensus router maintains the follow-
ing state:
1. Routing Information Base (RIB): stores for each pre-

fix the most recent (i) route update received from each
neighbor, (ii) locally selected best route, (iii) route ad-
vertised to each neighbor; this is identical to BGP’s
RIB.

2. History: stores for each prefix a chronological list of
received and selected routes in the RIB. A received
update is added to the History when an update is pro-
cessed, and a selected update is added when the best
path to a prefix changes.

3. Stable Forwarding Table (SFT): stores for each pre-
fix the next-hop interfaces corresponding to the stable
routes selected for the current and previous epochs.

Triggers: Consensus routers maintain the following in-
variant: if a router A adopts a new route to a destination,
then every router that had received the old route through
A has processed the update informing it of the change.
Triggers are used to maintain this invariant.

A trigger is a globally unique identifier for a set of
causally related events propagating through the network.
A trigger is a two-tuple: (AS number, trigger number).
The first field identifies the AS that generated the trigger.
The second field is a sequence number that is incremented
for each new trigger generated by that AS.

In BGP, each update announces a route and implicitly
withdraws the previously announced route. In consensus
routing, each update additionally carries a trigger that is
associated with the route being implicitly withdrawn and
replaced by the route announced in the update. The trigger
essentially tracks when the implicit withdrawal is com-
plete, i.e., when all routers that had previously heard of
the old route have processed the update. For uniformity,
we assume that a BGP withdrawal message is an update
announcing a null route that withdraws the previously an-
nounced route.

To maintain our invariant, we have the following rules
for associating triggers with updates. An AS A generates
a new trigger to be sent along with an update upon 1) a
failure of the adjacent link or the next-hop router in A’s
current route to the destination, 2) an operator-induced lo-
cal policy change that causes A to prefer another route to
the destination than the current one, or 3) receiving a route
from a neighbor B that it prefers over its current route via
a different neighbor C. Otherwise, when the received up-
date (from B) implicitly withdraws A’s current route (via
B) to the destination, A simply propagates the trigger as-
sociated with the received update.

Update Processing The procedure PROCESS UPDATE
presents the pseudocode for processing and propagating
updates and their triggers during each epoch. For simplic-
ity, we assume that 1) all updates are for a single prefix,
and 2) each AS is a single router; we relax both assump-
tions in Section 4.7. Upon receiving an update from AS
B with trigger t, AS A does as follows:

PROCESS UPDATE(B, r, t):
1. Add the update’s trigger t to the local set of incomplete trig-

gers IA.
2. Process the update as in BGP. Let old and new be the best

route to the prefix before and after the update. We define
next hop for a route to be the first AS in the route.

3. Add the received update (t, r) to the head of the History list.
Consider the following cases:

(a) old.next hop is not B, and new.next hop is not B: do
nothing since the best route has not changed.

(b) old.next hop is not B, and new.next hop is B: propagate
new to neighbors with trigger t′, where t′ is a newly gen-
erated trigger. Add the selected update (t′, new) to the
start of History.

(c) old.next hop is B: propagate new to neighbors with un-
changed trigger t. Add the selected update (t, new) to
the start of History.

4. Remove t from IA.

An AS marks a trigger as incomplete if it has not yet
fully processed an update carrying that trigger. “Process-
ing” an update means both running it through its local
policy engine and reliably propagating the resulting up-
date to its neighbors. Thus, if an update is waiting for
the MRAI timer at an AS, its associated trigger is marked
incomplete. Incomplete triggers at the time of the global
snapshot are excluded from the SFT for the next epoch.
To ensure consistency of routes, an AS does not adopt a
new route until it knows that the trigger associated with
the corresponding update is complete.

4.2 Distributed Snapshot

Routers transition from one epoch to another by taking
a distributed snapshot of global routing state. The local
image corresponding to AS A consists of the sequence of
triggers HA stored in A’s History, and the set of incom-
plete updates IA. An update can be incomplete at an AS
when the snapshot is taken because: (i) the update is being
processed by the AS (and is therefore in IA), (ii) the AS
might have processed a received update, but the resulting
update to a neighboring AS is waiting for the MRAI timer
to expire, or (iii) the update is in transit from a neighbor-
ing AS.

To initiate a distributed snapshot, an AS saves its local
state and sends out a special marker message to each of
its neighbors. When an AS A receives a marker mes-
sage for the first time, it executes the following procedure:

SNAPSHOT:
1. Save the sequence of triggers in History as HA.
2. Start logging any triggers received on channels other than

the one on which the marker was received.
3. Initialize the set of incomplete triggers IA to ε. Add the

set of triggers in IA to IA; these triggers correspond to the
updates currently being processed.

4. Scan the outgoing queues for updates waiting on MRAI
timers to expire, and add their triggers to IA.

5. Send a marker to all neighbors.
6. Stop logging triggers on a channel upon receiving a marker

on that channel.
7. Once the marker has been received on all channels, add

logged triggers to IA. These correspond to updates in transit
during the snapshot.

The above algorithm is essentially the Chandy-Lamport
snapshot algorithm [5] and can be initiated by any AS
in the system. A consistent view is obtained even when
multiple ASes initiate the snapshot operation concur-
rently, and we thus require each of the consolidators to
initiate the snapshot based on locally maintained timers.
The distributed state (HA and IA) across all ASes is
aggregated in order to compute a frontier, i.e., the most
recent complete update at each AS, as described next.

4.3 Frontier computation

The frontier computation consists of three steps:

Aggregation: After the snapshot, each AS A sends to all
consolidators the following snapshot report:
1. The set of incomplete triggers IA.
2. The saved sequence of triggers HA.

Consensus: Typically, Tier-1 ASes act as replicated con-
solidators. Replicated consolidators ensure that (i) there is
no single point of failure, (ii) no single AS is trusted with
the task of consolidating the snapshot, (iii) a consolidator
is reachable from every AS with high probability.

The consolidators wait for snapshot reports for a spec-
ified period of time. Then, they exchange received snap-
shot reports in order to propagate reports sent only to a
subset of the consolidators to all consolidators. The mes-
sage exchange does not guarantee that all consolidators
have the same set of reports. So, consolidators run Paxos
to agree upon the set of ASes, S, that have provided IA

and HA. Consolidators propose a value for S by commu-
nicating the reports that they have received to a majority
of consolidators. The communication can be optimized to
avoid the transmitting reports already available at the re-
cipients. The majority then picks one of the proposed set
of reports as the consensus value, and this value is propa-
gated to the rest. Paxos is safe, but not live: in no case will
the consolidators disagree on the set of ASes S, but if the
consolidators fail repeatedly (unlikely if they are Tier-1s),
then progress may be delayed.

When the consensus protocol terminates, each con-
solidator uses the snapshot reports IA and HA of each
AS A ∈ S to compute the set of incomplete triggers
I in the network. This set I is computed using the
procedure COMPUTE INCOMPLETE which works as
follows. A trigger is incomplete if present in an any
IA. A trigger is said to depend on all triggers that
precede it in any HA. This property ensures that any
causal dependencies between updates is captured by
our system. A trigger t is defined complete only if
neither t not any trigger it depends on is incomplete.
Therefore, if a trigger is incomplete, then all triggers that
follow it in any HA would also be considered incomplete.

COMPUTE INCOMPLETE(S, IA[], HA[]):
1. Initialize I =

S
A∈S IA.

2. Do until I reaches a fixed point:

(a) For each t ∈ I , for each A do:

i. if t occurs in HA, add the first occurrence of t and
all subsequent triggers in HA to I .

Flood: The set I of incomplete triggers in the network
enables ASes to determine the most recent complete fron-
tier. The consolidators flood the set of incomplete triggers
I and the membership set S as computed above to all the

ASes. At the end of this flooding phase, every AS uses the
same global information about incomplete triggers I and
the set of ASes S to compute the stable forwarding table
for the next epoch. Note that a simple optimization here
allows us to reduce the size of the flood message, by not
sending the complete set I . Since the consolidators know
the sequence HA for each AS A ∈ S, they need to only
send the first trigger from each HA that is incomplete.

4.4 Building Stable Forwarding Table

After an AS receives the set of incomplete triggers I
from the consolidators, it builds a new SFT and readies
its state for the next epoch. The procedure for an AS A’s
router to build its SFT is as follows:

BUILD SFT(I, S):
1. Copy the current SFT to be its previous SFT.
2. For each destination prefix p:

(a) Find the latest selected update u = (t, r) in p’s History
such that t is complete, i.e., neither t nor any preceding
trigger is in I .

(b) Adopt r as the route to p in the new SFT.
(c) Drop all records before u from p’s History.

Step 2 above adopts the most recent route update
for a prefix such that the trigger associated with it is
complete. If any adopted path contains an AS whose
snapshot report was excluded by consensus, then the
corresponding route is replaced by null in the SFT. This
ensures that a slow or failed AS is not used to transit
traffic in stable mode. Section 5 presents transient mode
techniques that improve packet delivery in this case.

4.5 View change

Versioning: The end of BUILD SFT marks the end of the
kth epoch and the beginning of the (k+1)th epoch. Since
ASes do not have synchronized clocks, different ASes
make this transition at slightly different times. To ensure
consistent SFTs, ASes maintain and use both the kth and
(k + 1)th SFT in epoch k + 1.

Packet forwarding at epoch boundaries proceeds as fol-
lows. Once a router has computed the (k + 1)th SFT,
it starts forwarding data packets using the new routes.
Along the way, if a packet reaches a router that has not
finished computing the (k + 1)th SFT, the router sets a
bit in the packet header, and routers forward the packet
along the route in the kth SFTs from that point onwards.
(A single bit in the header suffices if packet transit times
are less than the epoch duration. If not, we could use two
bits in the header, and packets older than one epoch are
forwarded using transient mode.) Once routers start for-
warding a packet on the older route, the packet continues
on that route until it reaches the destination. Disallowing
the packet to switch back to routes in the (k + 1)th SFTs
ensures loop-free forwarding.

Garbage collection: ASes discard the kth SFT after the
(k + 1)th epoch has ended, i.e., when the (k + 2)th SFT
has been computed. Discarding older tables ensures that
slow or failed ASes do not consume excessive resources
at other ASes. In the (k + 2)th epoch, if an AS receives
a packet sent using a route from the kth epoch or before,
it simply treats the packet as if the corresponding route
were null, and switches to the transient forwarding mode.

4.6 Safety and Liveness

Consensus routing generates consistent SFTs, i.e., if a
router r1 adopts a route r1, r2, . . . rk, P to a prefix P ,
then each intermediate router ri, i ≤ k adopts the route
ri, . . . , rk, P to that prefix. Equivalently, two routes des-
tined to the same prefix are defined consistent if they share
a common suffix starting from the first common router.
Consistency implies loop freedom.

The liveness property satisfied by consensus routing
implies that, irrespective of routing policies, ASes tran-
sition from one set of consistent policy-selected routes to
another, under restricted failure assumptions.

These properties are formally proved in the technical
report [21].

4.7 Extensions

4.7.1 Multiple routers in an AS

Consensus routing, as presented above, can safely accom-
modate multiple border routers in an AS. Each border
router plays the role that an AS plays above.Consistency
safety is preserved as routers only adopt complete up-
dates. However, this naive approach 1) does not scale well
as some ASes may have several tens of border routers,
2) does not reflect the administrative unity of policies
adopted by these routers.

To address these problems, consensus routing desig-
nates one (or more) router(s) in each AS as a local con-
solidator. The local consolidator collects the snapshot re-
ports from each border router, sends summary reports to
the Tier-1 consolidators, and gets back the set of incom-
plete triggers that it distributes to the border routers.

4.7.2 Prefix Aggregation

Consensus routers maintains History on a per-prefix basis,
so dependencies between different prefixes are not cap-
tured. Prefixes are independent except when aggregation
occurs. Consensus routing can easily be extended to han-
dle prefix aggregation. If an AS aggregates two prefixes
p1 and p2 into a larger prefix p, then all subsequent up-
dates received for p1 and p2 are also added to p’s History.
Thus, an update to p completes only after the correspond-
ing updates to its component prefixes have completed.

4.8 Protocol Robustness

We now describe how we deal with some of the problems
that might arise in the face of failures:

AS fails to send its snapshot in time: For the epochs to
progress smoothly, ASes have to send their local state to
the consolidators in a timely fashion. The consolidators
accept snapshotted states from other ASes for a period
of time after they initiate/receive the snapshot message.
When that period ends, the consolidators proceed to send
each other the set of snapshots received so that all of them
operate on the same information. If an AS fails to get its
snapshot to any one of the consolidators, because either
the AS is slow/misbehaving or all of the messages to con-
solidators are lost, then that constitutes a severe AS fail-
ure. In such cases, the unresponsive AS will not be used
for forwarding traffic in the next epoch, especially since
its state could be inconsistent with the rest of the network.
The exclusion of such ASes is done by having the con-
solidators also send out the set of ASes S from whom
snapshots were received, along with the consolidated list
of incomplete triggers. ASes compute their SFTs as de-
scribed earlier, but if any selected path contains an AS
whose snapshot was not available, then that path is re-
placed by null in the SFT. This ensures that the slow/-
failed AS is not used for transiting traffic in stable mode.
In the next section, we present transient mode techniques
that improve packet delivery in the face of such failures.
Consolidator fails: It is possible that the routers collecting
the local snapshots from ASes may fail. This could mean
that all the consolidators don’t operate on the same infor-
mation, especially if some snapshots are received only by
the failed consolidator and they have been partially prop-
agated to other consolidators. Our use of the Paxos con-
sensus algorithm helps us ensure that all the consolidators
operate on the same information with respect to ASes’ lo-
cal snapshots.
Recovery: An AS that does not reply to a snapshot re-
quest within a timely manner will be marked as failed.
(Note that an AS is not allowed to reply to a snapshot if it
has not completed the SFT computation for the previous
epoch). We re-integrate a failed AS in the same way that
BGP restores failed routers. The ‘failed’ AS exchanges
paths with its neighbors, just as it would have had it recov-
ered from a real failure in BGP. At the end of the epoch,
if the corresponding triggers are complete, then the new
SFTs computed can include the routers in the failed AS,
at which point the AS is considered re-integrated. The in-
troduction of new routers is identical to recovery of failed
ASes.

5 Transient mode
Forwarding switches to the transient mode when a stable
route is unavailable at a router. The stable route may be
unavailable due to two reasons. First, the next-hop router
along the stable route may be unreachable due to a failure.
Routers will not arrive at a consistent response to the fail-
ure until the next snapshot. Second, the stable route may

be null either because a non-null route has not yet prop-
agated to the router, or some router was slow to submit a
snapshot report.

Consensus routing enables a common architecture to
incorporate several known transient forwarding schemes
such as deflection, detour, and backup routes. Today,
in both BGP and intradomain routing, transient schemes
[40, 47, 24, 27] are believed necessary to maintain high
availability in the light of fundamental limits on conver-
gence times. What is lacking, especially in policy routing,
is a mechanism that 1) reliably indicates when to switch to
the transient mode and back, and 2) allows different tran-
sient forwarding schemes to co-exist. Consensus routing
provides this mechanism ensuring that a packet strictly
traverses adopted routes unless it encounters a failure, at
which point it switches to a failover option in accordance
with the AS’s policy preferences.

5.1 Transient forwarding schemes

5.1.1 Routing Deflections

When a packet encounters a failed link, the corresponding
router “deflects” the packet to a neighboring AS so that it
traverses a different route to the destination. The router
consults its RIB and identifies a neighboring AS that an-
nounced a different valid route to the destination. If the
trigger corresponding to that route is complete, then the
neighbor has applied the route to its SFT, and packet de-
livery is assured as long as the alternate route does not
encounter other failed links. Multiple link failures can be
handled by adding the identity of each failed link to the
transient packet’s header [27] before deflecting it.

If no neighboring AS has announced a different valid
route to the destination, the router deflects the packet us-
ing backtracking, i.e., forwarding the packet back along
the link on which it arrived. Backtracking may be ex-
tended to multiple hops if the previous AS does not have
a different valid route in order to increase the likeli-
hood of successful delivery. Caching information about
failed links and pre-computing deflections corresponding
to each next-hop further improves lookup times in the for-
warding plane.

Unfortunately, backtracking alone is insufficient to
guarantee reachability, even if physical routes to the des-
tination exist. Figure 5 gives an example. Bold lines rep-
resent chosen best routes to the destination D. Each node
exports only its best route to its neighbors. For exam-
ple, node 1 knows two routes to D: 1-4-D and 1-5-D, but
it exports to S only its best route 1-5-D. S knows three
routes to D: S-1-5-D, S-2-5-D, and S-3-5-D. Observe that
all three routes go through the same link 5-D. Thus, if the
link 5-D is down, then even backtracking all the way to S
will not help packet delivery, as none of the nodes S, 2, 5
know an alternate route. The next two transient forward-
ing schemes alleviate this problem.

S

5

321

D

64

Figure 5: Why deflection packets need more information than
BGP. Simple backtracking to provider ASes is not optimal.

5.1.2 Detour routing

When a packet encounters a failed link, the corresponding
router selects an AS B and tunnels transient packets to
it. Upon receiving the packet, B becomes responsible for
forwarding the packet to the destination. If B is a Tier-
1 AS, there is a high chance of delivering the packet to
the destination, since Tier-1 ASes are likely to know of
diverse routes to destinations.

This detour approach—having ASes off the standard
forwarding path take responsibility for delivering a packet
that encounters failures—suggests a potential new busi-
ness model for ASes where certain ASes advertise them-
selves as available to deliver packets that encounter fail-
ures. Such ASes could either provide the tunneled de-
touring service for the entire Internet or just for desig-
nated prefixes. The tunneling service is similar in spirit to
MIRO [46]. Exploring the business model for detour ser-
vice providers in more detail is beyond the scope of this
paper; our focus here is on evaluating the effectiveness of
detour routing for transient packet delivery.

5.1.3 Backup Routes

When a packet encounters a failed link, the correspond-
ing router uses a pre-computed backup route to forward
the packet. One scheme for pre-computing backup routes
to each destination is RBGP [24], which allows ASes to
announce backup routes to each other with only slight
modifications to BGP. RBGP also shows that choosing
the backup route that is most link-disjoint from the pri-
mary route protects against single link failures—packet
delivery is guaranteed as long as a valid route to the des-
tination exists, under certain restrictions on the policies
used for selecting and advertising routes. For instance, in
the example discussed in Figure 5, node 1 would compute
a backup route 1-4-D and export it to 5, thereby allowing
5 to use the route when its link to D fails.

5.2 Implementation Issues

Each of these transient forwarding methods requires some
changes to the way packet forwarding works today. De-
flection routing requires additional space in the header to

store information about the link failures encountered by
the packet. Further, backtracking to the previous AS re-
quires packet encapsulation, since the packet will be flow-
ing against the forwarding tables of routers in the current
AS. The router that encounters a failed link would have to
encapsulate the packet and send it to the ingress router for
the AS, which can then send the packet back to the AS it
came from. In order to actually backtrack, one would have
to keep track of which AS each packet came from, a task
that would require additional processing even for stable
mode forwarding. To avoid this overhead, backtracking
can be approximated by routing the packet towards the
source.

Detour routing also requires packet encapsulation, in
order to tunnel the packet to the AS that is responsible for
delivering those packets that encounter failures. Backup
routing techniques like RBGP do not require changes to
the packet format, but they require routers to maintain
multiple forwarding tables, one for the regular paths and
rest for the backup paths.

6 Evaluation
In this section, we explore the effectiveness of consen-
sus routing in maintaining connectivity among ASes, and
also analyze the overhead incurred by it. We evaluate con-
sensus routing using 1) extensive simulations on realistic
Internet-scale topologies, 2) an implemented XORP [19]
prototype, and 3) experiments on PlanetLab. For simula-
tion experiments, we built a custom simulator to compare
the behavior of BGP and consensus routing with respect
to consistency and availability in the face of failures and
policy changes. Our results suggest that consensus rout-
ing yields significant availability gains over BGP while
ensuring that packets traverse adopted routes, and that
consensus routing adds negligible processing overhead.

6.1 Simulation methodology

We compare standard BGP and consensus routing by sim-
ulating routing decisions, protocol control traffic, and link
failure on a realistic topology. We use the November 2006
CAIDA AS-level graph [17], gathered from RouteViews
BGP tables [18], which includes 23,390 ASes and 46,095
links. CAIDA annotates the link with the inferred busi-
ness relationship of the linked ASes, namely customer-
provider, provider-customer, or peer-peer.

Our simulator simulates route selection and the ex-
change of route updates between ASes, accounting for
MRAI timers. We use standard “valley-free” export
policies matching economic incentives, whereby routes
through peers and providers are exported only to cus-
tomers, and customer routes are exported to everyone [9].
We also follow standard route selection criteria, again
driven by economic incentives, with customer routes pre-
ferred over peer routes, which in turn are preferred over

provider routes. If multiple routes fall in the same cate-
gory, the first tiebreaker is shortest AS path length, and
the second is lowest next-hop AS identifier.

We study the routing protocols in three settings: (i) link
failures, (ii) traffic engineering accomplished by announc-
ing and withdrawing sub-prefixes, and (iii) traffic engi-
neering accomplished by AS path prepending.

6.2 Link failures

To evaluate the ability of a protocol (BGP or consensus
routing with one of the transient mode variants) to cope
with failure, we set all routers in our simulator to use that
protocol and allow them to reach a stable routing config-
uration. Then, we conduct a trial for each provider link L
of each multi-homed stub AS A. A multi-homed stub AS
is an AS with more than 1 provider and no customers; our
topology includes 9,100 such ASes. We focus on these
because the stub AS has a valid physical route to rest of
the Internet even if the provider link L fails. In each trial,
we fail the link L, and we record any AS that undergoes a
period of disconnectivity to A before converging to a new
route after the failure. We do not include ASes that the
failure permanently disconnects and leaves without any
policy-compliant routes. For BGP, an AS is disconnected
if it has no route to A or if its forwarding path towards A
includes a loop. For consensus routing, no loops occur,
so an AS is disconnected if its SFT route to A includes
the failed link, and the particular transient mode variant
employed in the trial fails to find a valid route to A.

6.2.1 Standard BGP
We first simulate BGP and demonstrate that, following
failures, disconnectivity is widespread before ASes even-
tually converge to new policy-compliant routes. Our sim-
ulator found convergence times similar to those of Internet
measurement studies [26]. Figure 6 shows the prevalence
of loops and other disconnectivity (note that a loop is a
form of disconnectivity). It shows, for each failure, the
fraction of ASes that at some point have no working route
to the target AS, before eventually learning a new work-
ing route. We see that the failure of just a single link to a
multi-homed AS causes widespread disconnectivity, with
13% of failures causing at least half of all ASes to experi-
ence routing loops, and 21% of failures causing more than
half of all ASes to experience periods of disconnection.

The prevalence of loops argues for the safe application
of updates, and the extensive disconnectivity argues for
reliable routing in the face of failure.

6.2.2 Consensus routing with transient forwarding

We next evaluate the effectiveness of consensus routing,
coupled with various schemes for transient forwarding, at
addressing the BGP problems manifest in our simulations.
By design, consensus routing ensures that routes adopted
at epoch boundaries are loop-free. When adopted routes

Figure 6: Loops and disconnectivity in BGP following a
failure.

Figure 7: Disconnectivity in consensus routing following
a failure.

Figure 8: Traffic engineered subprefixes causes loops in
BGP.

Figure 9: Path prepending causes intra-domain loops in
BGP, leading to disconnectivity.

contain failed links, transient mode routing is invoked.
We examine the effectiveness of the following represen-
tative schemes for transient forwarding in the face of fail-
ures.

Detouring through Tier-1: The router selects the clos-
est Tier-1 AS and detours the packet there. If the Tier-1
does not have a route, it drops the packet.

Deflection by backtracking: The packet is backtracked
to the source one hop at a time. If any hop has a failure-
free route, it routes the packet to the destination. If the
packet reaches the source and the source does not have an
alternate route, it drops the packet.

Precomputed backup routes: Routers pre-compute
backup routes as in RBGP, which picks the backup route
that is most link-disjoint with respect to the primary
route. When links fail, policy compliant backup routes
are used.

Before invoking any of the above techniques, a router
first consults its RIB to ascertain if any neighbor has an-
nounced a different valid route R in the most recent com-
plete update. If so, the router safely deflects the transient
packet to that neighbor known to have R in its SFT.

Figure 7 shows the effectiveness of consensus routing
variants at finding usable routes in the face of failure.
Even the simplest forms of transient routing greatly im-
prove connectivity. Backtracking enables continous con-
nectivity to at least 74% of ASes following 99% of the
failure cases. More sophisticated failover techniques fur-

ther improve connectivity. By detouring to a Tier-1 AS,
all ASes maintain complete connectivity following 98.5%
of the failures evaluated. Policy compliant backup routes
provided similar benefits, with complete connectivity be-
ing maintained following 98% of the failures. This exper-
iment suggests that consensus routing can accommodate
existing transient forwarding schemes, along with one of
the above transient mode variants would provide signifi-
cantly higher levels of connectivity than BGP, for the fail-
ure cases we simulated.

6.3 Traffic engineering by using subprefixes

As described earlier (Figure 2), ASes can engineer traffic
by advertising and withdrawing prefixes through a subset
of its providers. If ASes advertise their entire range to
all providers and selectively advertise their sub-prefixes
to control routing, an AS can control its incoming traf-
fic without losing the fault-tolerance benefits of multi-
homing. We now evaluate the impact of this form of
traffic engineering on route consistency and availability.
We evaluate standard BGP and consensus routing us-
ing our Internet topology graph, and consider subprefix-
based traffic engineering for all multihomed ASes that
have three or more providers. There are 3,451 such ASes
and 12,890 inter-AS links between these ASes and their
providers. In each run, we pick an AS and one of its
providers, and withdraw the subprefix from each of the
other providers. We then allow the system to converge us-
ing BGP and consensus routing, and examine the routes

determined by the routing protocols during convergence.
Figure 8 shows the results. For BGP, we see that in

more than 55% of the test cases, ASes were disconnected
from the destination due to transient loops formed dur-
ing convergence. Consensus routing transitions from one
set of consistent loop-free routes to another, completely
avoiding transient loops. Note that transient forwarding
by itself does not help in this case, as there is no ”failure”
to trigger the use of transient forwarding or backup routes.

6.4 Traffic engineering by path prepending

We now examine the effect of AS path prepending on
the consistency of the routing protocols. Path prepend-
ing is another form of traffic engineering wherein a multi-
homed AS controls the amount of traffic that flows in
through each of its inter-AS links. By prepending itself
multiple times on some of its advertised routes, an AS can
make the prepended routes less preferrable, encouraging
upstream ASes to reroute traffic to better paths.

For this experiment, we simulate the routing protocols
using the same Internet topology as the previous exper-
iments. In addition, we also model the interaction be-
tween BGP and iBGP as this form of traffic engineering
is known to cause intra-domain routing loops that in turn
lead to routing blackholes [44]. We therefore pick a Tier-
1 AS (AT&T for our experiments) and expand its corre-
sponding node in the Internet graph to capture all of its
internal topology, while continuing to represent all other
ASes as single nodes. We obtained the internal topol-
ogy for AT&T using the data collected by iPlane [30].
We assume that all the border routers are connected in a
full-mesh topology, and model the propagation of routes
through the AS according to the iBGP protocol. In this
setting, an update is considered incomplete if it is not fully
processed by all of AT&T’s iBGP routers. For our evalu-
ation, we consider all the multi-homed stub ASes present
in the customer cone of AT&T. In each run of the exper-
iment, we pick one of these stub ASes, which prepends
itself three times (our analysis of BGP updates received
at the University of Washington showed that most origin
ASes prepend their AS number thrice.) on routes to all
but one of its providers. We repeat this run for each of its
providers.

Figure 9 shows that in more than 20% of the cases,
the Tier-1 AS suffers from intra-domain loops due to path
prepending by some downstream AS and in many of those
instances a significant fraction of other ASes lose connec-
tivity to the target AS.

6.5 Overhead

The previous sections showed BGP’s inability to main-
tain continuous connectivity in the face of failure or policy
changes, as well as the significantly improved connectiv-
ity enabled by consensus routing. We now examine the

Figure 10: Control traffic required by consensus routing.

Number of Time when first Time when last
nodes node learns value node learns value

9 434 ms 490 ms
18 485 ms 1355 ms
27 590 ms 1723 ms

Table 1: The time taken to run Paxos on 9, 18, and 27 PlanetLab
nodes.

additional cost incurred by consensus routing compared
to BGP.

Volume of control traffic In addition to BGP route up-
date messages, routers running consensus routing must
send control traffic to take a distributed snapshot and flood
the set of incomplete triggers. Figure 10 shows a CDF
of the mean amount of control traffic sent by routers us-
ing BGP and consensus routing for our multi-homed stub
AS access link failure simulations. The consensus rout-
ing overhead was computed for different epoch lengths:
30 seconds, 60 seconds, and 120 seconds.

We observe that the additional overhead introduced by
consensus routing is rather negligible. This is because
BGP sends updates that are relatively large to all the ASes,
whereas the additional traffic sent by consensus routing is
mostly sets of triggers, which are smaller; furthermore,
this traffic is sent only to transit ASes.

Cost of consensus At the end of each epoch, the consol-
idators have to reach an agreement on the set of snapshots
that will be considered for computing the SFTs. We eval-
uate the time taken for this process by running Paxos on
PlanetLab. In our experiment, we pick 9 random Plan-
etLab nodes, (each representing a router in a Tier-1 AS),
and run Paxos with each of these nodes playing the roles
of a proposer, an acceptor, and a learner. We measure
the time it takes from when a node proposes a value, to
when it learns of the chosen value, and the results are
available in Table 1. With 9 nodes, all them learn the
agreed value in under 450 milliseconds. We then repeat
the experiment with 18 and 27 nodes, which are settings
that model replication by each consolidator AS to pro-
vide fault-tolerance. We observe that the slowest node
learns of the chosen value in under 1.4 seconds and 1.8

Figure 11: Path dilation incurred by interdomain transient mode
options.

seconds respectively. We believe that these overheads are
acceptable for consensus routing even with epoch dura-
tions that are only a few tens of seconds. Further, the time
for the consensus phase would be even lesser in a practical
deployment, where the loss rates would be significantly
lower than what we saw in our experimental PlanetLab
setup. We would like to note that any other consensus
algorithm, such as Virtual Synchrony [2], can be used in-
stead of Paxos.

Path dilation Figure 11 shows the average amount of
path dilation incurred by the various transient mode tech-
niques. Path dilation is the length of the route (in AS
hops) traversed by the packet when it encounters failure
(from source to failure, then along the detour to the desti-
nation), minus the length of the pre-failure route from the
source to the destination. It is a measure of how far pack-
ets have to be redirected. All the techniques experience
a modest amount of dilation, with detouring to a Tier-1
experiencing the most (unsurprisingly).

Response time In BGP, an AS starts using a path as
soon as it selects it. However, in consensus routing, an
AS has to wait at least till the next epoch boundary be-
fore it can change the path it is using. We instrument
our multi-homed access link failure simulations to iden-
tify the average delay between receiving a path and ap-
plying it to the forwarding plane in the case of consensus
routing. Figure 12 shows the average delay for different
epoch lengths. As expected, shorter epoch lengths allow
quicker adoption of new paths. A 30 second epoch results
in more than 90% of the paths being adopted in less than
two minutes after the path is received. Note that typical
BGP path convergence times are of similar duration.

Flux in adopted routes We also measure how many
changes are made to routing tables across the entire topol-
ogy for each routing failure event in our access link failure
simulations. In Figure 13, we see that ASes go through
several route changes before converging on a stable route
in traditional BGP, whereas the convergence takes place
through fewer steps in consensus routing. For consensus
routing, the number of changes per failure event is typi-

Figure 12: Delay incurred by consensus routing between re-
ceiving and using a path.

Figure 13: Number of path changes observed in the system.

cally just one or two per AS, corresponding to the number
of epochs the AS takes to stabilize to its eventual route.

Implementation overhead Our XORP prototype was
used to measure the implementational complexity, and the
update processing overhead at each router. We found that
consensus routing added about 8% in update processing
overhead, and about 11% additional lines of code to the
BGP implementation. More details are available in [21].

7 Security Implications
The separation of packet delivery into two logically dis-
tinct modes of packet delivery — stable and transient –
offers other potential benefits with respect to routing se-
curity, which we discuss next.

Much prior work has studied the problem of secur-
ing BGP against malicious ASes such as SBGP [22],
soBGP [45], SPV [20], Listen and Whisper [43]. The pri-
mary focus of these efforts is to add cryptographic secu-
rity to BGP, e.g., to ensure authenticity and integrity of ad-
vertised routes; these mechanisms are applicable to con-
sensus routing as well. However, malicious ASes can also
use non-cryptographic attacks that exploit protocol dy-
namics inherent to BGP. For example, a malicious AS can
repeatedly announce and withdraw a route causing large
shifts in the data plane at ASes much further away [32].
It can also abuse MRAI timers and route flap dampeners
intentionally to slow down the responsiveness of other be-
nign ASes to network conditions. MRAI timers are con-

sidered necessary to both reduce convergence time and
message overhead, and opinions differ on whether or not
there is any benefit to further tuning timers [13, 37, 7]
even assuming a benign environment.

The stable mode makes routing more deterministic and
hence easier to secure. ASes can agree to impose a pri-
ori specified upper and lower bounds on the interval be-
tween snapshots. While we have not implemented this
yet, using standard byzantine fault tolerance agreement
techniques [4], ASes that are slow or unresponsive either
due to benign or malicious reasons can be consistently ex-
cluded from the snapshot observed by all ASes provided
the network is sufficiently well-connected and the number
of byzantine ASes is small. Thus, two good ASes will see
the same set of complete updates at the end of an epoch
ensuring that their SFTs are consistent. The impact of
spurious transient packets can be limited by the following
mechanisms - (i) using the failure information only for
that packet as opposed to caching it, (ii) limiting the rate
at which transient packets can be generated by a single
AS as well as in aggregate, (iii) detecting and punishing
ASes generating conflicting transient packets. Finally, a
malicious AS can still drop all the packets in the forward-
ing plane after announcing legitimate routes. End-to-end
tecniques are needed to detect and punish such ASes. In
fact, the consistency property—knowing the exact route a
packet will take—makes this detection easier.

8 Related Work
Consensus routing, to our knowledge, is the first interdo-
main routing proposal that allows general routing policies
while ensuring high availability. A large body of prior
work contributed valuable insights to its design.

Complex dynamics Researchers and practitioners con-
tinue to discover complex and unintended effects of BGP
dynamics. These include counterintuitive interaction of
timers [31]; “wedgies” or unintended stable route config-
urations that are difficult to revert [12]; a recovering link
causing routing blackholes due to the interaction of in-
tradomain and interdomain routing [44], etc. BGP con-
figuration is considered by some as a black art under-
stood only by a precious few network gurus [42]. This
state of affairs calls for making interdomain routing sim-
ple to comprehend and manage, which consensus routing
achieves by enabling a consistent view of routing state.

Griffin et al. [14] showed that cyclic policy prefer-
ences can cause persistent instability. Gao and Rexford
[9] showed that by restricting routing policies, stability is
guaranteed without global coordination. Consensus rout-
ing uses distributed coordination to ensure that ASes tran-
sition from one set of consistent (loop-free) routes to an-
other, even under general routing policies. The transient
mode ensures high availability throughout.

Consistent Routing: Consistent routing solutions have
been previously proposed for intradomain settings. A ma-
jor advantage of an intradomain settings is that it allows
for a logically centralized route computation and infor-
mation dissemination plane as advocated by RCP [3] or
4D [11]. Luna-Aceves [10] proposed a decentralized ap-
proach to consistent route computation for shortest-path
distance vector routing, where each node waits for an ac-
knowledgment from the upstream node before adopting
the route. The C-BGP proposal by Kushman et al. [25] is
a natural extension of this approach to policy routing. Un-
fortunately, waiting for acknowledgments from upstream
ASes means that ASes must rely on timeouts longer than
the worst-case BGP convergence delay to ensure consis-
tency; during this time the destination may be unavail-
able even though a policy-compliant physical route ex-
ists. Consensus routing also waits for the withdrawal of
the old route before adopting the new route. However,
the transient mode ensures high availability even when a
stable route is unavailable. The stable mode ensures 1)
consistency safety, and 2) progress when more than half
the consolidators are up—the epoch length is determined
by propagation delays and is not limited by BGP conver-
gence delays. Further, consensus routing not only pro-
vides routing consistency, but it can also be extended to
support atomic/transactional updates. Transactional up-
dates enable operators to enact multiple traffic engineer-
ing operations simultaneously in order to smoothly tran-
sition from one set of stable policies to another without
causing blackholes and other anomalies.

Triggers in consensus routing are similar to “root cause
notification” (RCN) mechanisms proposed previously to
weakly track causal relationships between propagating
updates to speed convergence [34] or prevent loops [36,
24]. To our knowledge, consensus routing is the first pro-
posal to adapt this mechanism for consistent routing under
general policies.

Failure Recovery: The transient mode is similar in spirit
to similar proposals for intradomain routing [47, 40, 27].
The proposal by Lakshminarayanan et al. [27] for link-
state routing maintains consistent routing tables and en-
codes information about failed links in packet headers to
route around the failure.

R-BGP [24] proposes to use pre-computed backup
paths to provide reliable delivery during periods where
the network is adapting to failures. Our results on back-
tracking and finding detours on the fly indicate that pack-
ets can be delivered with a high probability even when
backup paths are not known, given the current nature of
the Internet graph. Furthermore, R-BGP relies on the
provider>peer>customer preference for loop-freeness,
whereas consensus routing computes consistent routes
with general policies.

9 Conclusion

Networking researchers lay great store by the need to im-
prove Internet availability from about two nines (99%) to-
day to four to five nines like other infrastructural services.
Although link failure rates can be reasonably expected to
improve with time, and consequently drive down periods
of transient unavailability to negligible values in intrado-
main settings, a policy-driven interdomain routing proto-
col is fundamentally susceptible to long periods of conver-
gence causing transient unavailability. Improving Internet
availability to five nines requires us to recognize this fun-
damental limitation and design around it. Our proposal,
consensus routing, is a modest step towards that goal.

Acknowledgments

We gratefully acknowledge Jon Crowcroft for guiding us
through the shepherding process. We also would like to
thank the anonymous NSDI reviewers for their valuable
feedback on the submitted version. This research was par-
tially supported by the National Science Foundation under
Grants CNS-0435065 and CNS-0519696.

References
[1] Personal communication with Aspi Siganporia of Google Inc.
[2] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in

distributed systems. In SOSP, pages 123–138, 1987.
[3] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and

J. van der Merwe. Design and Implementation of a Routing Con-
trol Platform. In NSDI, 2005.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
OSDI, 1999.

[5] K. M. Chandy and L. Lamport. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Transactions on
Computer Systems, 3(1):63–75, February 1985.

[6] D. Chang, R. Govindan, and J. Heidemann. The Temporal and
Topological Characteristics of BGP Path Changes. In ICNP, 2003.

[7] S. Deshpande and B. Sikdar. On the impact of route processing and
MRAI timers on BGP convergence times. GLOBECOM, 2004.

[8] S. Deshpande and B. Sikdar. On the impact of route processing
and MRAI timers on BGP convergence times. In Global Telecom-
munications Conference, 2004. GLOBECOM ’04, 2004.

[9] L. Gao and J. Rexford. Stable Internet routing without global co-
ordination. IEEE/ACM TON, 9(6):681–692, 2001.

[10] J. J. Garcia-Luna-Aceves. A unified approach to loop-free routing
using distance vectors or link states. In SIGCOMM, 1989.

[11] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. SIGCOMM CCR, 2005.

[12] T. Griffin and G. Huston. BGP wedgies. Network Working Group,
RFC 4264, November 2005.

[13] T. Griffin and B. Premore. An Experimental Analysis of BGP
Convergence Time. In ICNP, 2001.

[14] T. G. Griffin, B. F. Shepherd, and G. Wilfong. The stable paths
problem and interdomain routing. IEEE/ACM TON, 10(2), 2002.

[15] T. G. Griffin and G. Wilfong. On the correctness of iBGP config-
uration. In SIGCOMM, 2002.

[16] U. Hengartner, S. Moon, R. Mortier, and C. Diot. Detection and
analysis of routing loops in packet traces. In IMW, 2002.

[17] http://www.caida.org/data/active/as relationships/. The CAIDA
AS relationships dataset, November 2006.

[18] http://www.routeviews.org. RouteViews.
[19] http://www.xorp.org. XORP: Open source IP router.
[20] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure path vector routing

for securing BGP. SIGCOMM CCR, 34(4):179–192, 2004.

[21] J. P. John. Consensus Routing. Techni-
cal report, University of Washington, 2007,
www.cs.washington.edu/homes/jjohn/consensus-tr.pdf.

[22] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol.
IEEE JSAC, 18(4):582–592, 2000.

[23] N. Kushman, S. Kandula, and D. Katabi. Can you hear me now?!
It must be BGP. CCR, 37(2):75–84, 2007.

[24] N. Kushman, S. Kandula, and D. Katabi. R-BGP: Staying Con-
nected in a Connected World. In NSDI, 2007.

[25] N. Kushman, D. Katabi, and J. Wroclawski. A Consistency Man-
agement Layer for Inter-Domain Routing. MIT Tech. Report, 2006.

[26] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet
routing convergence. In SIGCOMM, 2000.

[27] K. K. Lakshminarayanan, M. C. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving convergence-free routing us-
ing failure-carrying packets. In SIGCOMM, 2007.

[28] L. Lamport. The part-time parliament. ACM TOCS, 16(2):133–
169, 1998.

[29] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4), 2001.
[30] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane: An Information
Plane for Distributed Services. In OSDI, 2006.

[31] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route flap
damping exacerbates internet routing convergence. In SIGCOMM,
2002.

[32] O. Nordstrm and C. Dovrolis. Beware of BGP attacks. SIGCOMM
CCR, 34(2), 2004.

[33] V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACM
TON, 5(5):601–615, 1997.

[34] D. Pei, M. Azuma, D. Massey, and L. Zhang. BGP-RCN: Improv-
ing BGP convergence through root cause notification. Computer
Networks, 48(2):175–194, 205.

[35] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study of BGP path
vector route looping behavior. In ICDCS, 2004.

[36] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, S. Wu, and
L. Zhang. Improving BGP convergence through consistency as-
sertions. In IEEE INFOCOM, 2001.

[37] J. Qiu, R. Hao, and X. Li. The optimal rate-limiting timer of BGP
for routing convergence. IEICE Transactions on Communications,
E88-B(4):1338–1346, September 2004.

[38] S. Y. Qiu, P. D. McDaniel, and F. Monrose. Toward valley-free
inter-domain routing. In IEEE ICC, 2007.

[39] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and O. Bonaventure.
Interdomain traffic engineering with BGP. IEEE Communications
Magazine, 2003.

[40] M. Shand and S. Bryant. IP Fast Reroute Framework. IETF Draft,
2007.

[41] A. Sridharan, S. B. Moon, and C. Diot. On the correlation between
route dynamics and routing loops. In IMC, 2003.

[42] J. W. Stewart. BGP4: Inter-Domain Routing in the Internet.
Addison-Wesley, 1998.

[43] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz. Listen
and Whisper: Security Mechanisms for BGP. In NSDI, 2004.

[44] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measure-
ment study on the impact of routing events on end-to-end Internet
path performance. SIGCOMM CCR, 36(4), 2006.

[45] R. White. Securing BGP through Secure Origin BGP. Internet
Protocol Journal, 6(3), 2003.

[46] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing. In
SIGCOMM, 2006.

[47] X. Yang and D. Wetherall. Source selectable path diversity via
routing deflections. In SIGCOMM, 2006.

	Introduction
	A case for consistency
	Consensus routing overview
	Stable Mode
	Router State, Triggers, Update Processing
	Distributed Snapshot
	Frontier computation
	Building Stable Forwarding Table
	View change
	Safety and Liveness
	Extensions
	Multiple routers in an AS
	Prefix Aggregation

	Protocol Robustness

	Transient mode
	Transient forwarding schemes
	Routing Deflections
	Detour routing
	Backup Routes

	Implementation Issues

	Evaluation
	Simulation methodology
	Link failures
	Standard BGP
	Consensus routing with transient forwarding

	Traffic engineering by using subprefixes
	Traffic engineering by path prepending
	Overhead

	Security Implications
	Related Work
	Conclusion

