
Paxos

The Part-Time Parliament

Parliament determines
laws by passing sequence
of numbered decrees
Legislators can leave and
enter the chamber at
arbitrary times
No centralized record of
approved decrees–
instead, each legislator
carries a ledger

Government 101

No two ledgers contain contradictory
information

If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

any decree proposed by a legislator would
eventually be passed
any passed decree would appear on the
ledger of every legislator

Supplies
Each legislator receives

ledger

pen with indelible ink

scratch paper

hourglass

lots of
messengers

Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it

The Players

Proposers

Acceptors

Learners

Choosing a value

Use a single
acceptor

5

7

6

2

Choosing a value

Use a single
acceptor

5

7

6

2

6

What if
the acceptor fails?

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

6

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

6

6

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

6

6

6
6 is chosen!

6

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first !
! proposal that it receives

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first !
! proposal that it receives

...but what if we have multiple proposers, each
proposing a different value?

P1 + multiple proposers

5

7

6

2

P1 + multiple proposers

5

7

6

2

5

6

2

P1 + multiple proposers

5

7

6

2

5

6

2

No value is chosen!

Handling
multiple proposals

Acceptors must accept more than one proposal

To keep track of different proposals, assign a
natural number to each proposal

A proposal is then a pair (psn, value)

Different proposals have different psn

A proposal is chosen when it has been
accepted by a majority of acceptors

A value is chosen when a single proposal
with that value has been chosen

Choosing a unique value
We need to guarantee that all chosen
proposals result in choosing the same value

We introduce a second requirement (by
induction on the proposal number):
P2. If a proposal with value v is chosen,
! then every higher-numbered proposal
! that is chosen has value v
which can be satisfied by:
P2a. If a proposal with value v is chosen,
! then every higher-numbered proposal
! accepted by any acceptor has value v

What about P1?

What about P1?

Do we still need P1?

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

5

7

6

2

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

5

7

6

2

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

(1,6)

(1,6)

6 is chosen!

5

7

6

2

(2,7)

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

(1,6)

(1,6)

6 is chosen!

How does it know
it should not accept?

Another take on P2

Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal issued
by any proposer has value v

Implementing P2 (I)

Suppose a proposer p wants to issue a proposal
numbered n. What value should p propose?

If (n’,v) with n’ < n is chosen, then in every
majority set S of acceptors at least one acceptor
has accepted (n’,v)...

...so, if there always exists a majority set S
where no acceptor has accepted a proposal with
number less than n, then p can propose any value

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Implementing P2 (II)

What if for all S some acceptor ends up
accepting a pair (n’,v) with n’ < n?

Claim: p should propose the value of the highest
numbered proposal among all accepted proposals
numbered less than n

Proof: By induction on the number of proposals
issued after a proposal is chosen

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Implementing P2 (III)

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of a
majority of acceptors such that either:

no acceptor in S has accepted any proposal numbered
less than n, or
v is the value of the highest-numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

P2c in action

No acceptor in S
has accepted any
proposal numbered
less than n

(4,8)

(1,5)

(5,2)

S

(2,7)

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(4,8)

(3,2)

(5,2)

S

(18,2)

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,2)

(3,2)

(4,1)

S(18,1)

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,2)

(3,2)

S(18,1)

(5,2)
(5,2)

The invariant is violated

Future telling?

To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than n, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Future telling?

To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than n, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Avoid predicting the future by extracting a
promise from a majority of acceptors not to
subsequently accept any proposals numbered
less than n

 The proposer’s protocol (I)

A proposer chooses a new proposal number n and sends
a request to each member of some set of acceptors,
asking it to respond with:

a. A promise never again to accept a proposal
numbered less than n, and

b. The accepted proposal with highest number less
than n if any.

...call this a prepare request with number n

 The proposer’s protocol (II)
If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number n and value v, where v is

a. the value of the highest-numbered proposal
among the responses, or

b. is any value selected by the proposer if
responders returned no proposals

A proposes issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.
...call this an accept request.

 The acceptor’s protocol

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

It can always respond to a prepare request

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

It can always respond to a prepare request
It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

It can always respond to a prepare request
It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered
! ! n iff it has not responded to a prepare
! ! request having number greater than n

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

It can always respond to a prepare request
It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered
! ! n iff it has not responded to a prepare
! ! request having number greater than n

...which subsumes P1.

Small optimizations

If an acceptor receives a prepare request r numbered n
when it has already responded to a prepare request for
n’ > n, then the acceptor can simply ignore r.

An acceptor can also ignore prepare requests for
proposals it has already accepted

...so an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered prepare request to which it has
responded.

This information needs to be stored on stable storage to
allow restarts.

Choosing a value:
Phase 1

A proposer chooses a new n and sends <prepare,n> to a
majority of acceptors

If an acceptor a receives <prepare,n’>, where n’ > n of
any <prepare,n> to which it has responded, then it
responds to <prepare, n’ > with

a promise not to accept any more proposals
numbered less than n’

the highest numbered proposal (if any) that it has
accepted

Choosing a value:
Phase 2

If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

the value of the highest numbered proposal
among the responses
any value if the responses reported no proposals

If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded to
<prepare,n’> , where n’ > n

Learning chosen
values (I)

Once a value is chosen, learners should find
out about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value
has been chosen

☠

(4,8)

(7,6)

Was 6
chosen?

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value
has been chosen

☠

(4,8)

(7,6)

Was 6
chosen?

Propose something!

Liveness

Progress is not guaranteed:
n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

Implementing State
Machine Replication

Implement a sequence of separate instances
of consensus, where the value chosen by the
ith instance is the ith message in the sequence.

Each server assumes all three roles in each
instance of the algorithm.

Assume that the set of servers is fixed

The role of the leader

In normal operation, elect a single server to be
a leader. The leader acts as the distinguished
proposer in all instances of the consensus
algorithm.

Clients send commands to the leader, which decides
where in the sequence each command should appear.

If the leader, for example, decides that a client
command is the kth command, it tries to have the
command chosen as the value in the kth instance of
consensus.

A new leader is elected...

Since is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

 then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

λ

λ

λ

Stop-gap measures

All replicas can execute commands 1-10, but not
13-16 because 11 and 12 haven't yet been chosen.

 can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

 runs phase 2 of consensus for instance numbers 11
and 12.

Once consensus is achieved, all replicas can execute
all commands through 16.

λ

λ

To infinity, and beyond

 can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

 just sends a message with a sufficiently high
proposal number for all instances

An acceptor replies non trivially only for instances for
which it has already accepted a value

λ

λ

Paxos and FLP

Paxos is always safe–despite asynchrony

Once a leader is elected, Paxos is live.

“Ciao ciao” FLP?

To be live, Paxos requires a single leader
“Leader election” is impossible in an
asynchronous system (gotcha!)

Given FLP, Paxos is the next best thing: !
always safe, and live during periods of synchrony

Around FLP in 80 Slides

Condition-based
Consensus

Is it possible to identify the set of conditions
on the input values under which consensus is
solvable?

Condition-based
Consensus

Is it possible to identify the set of conditions
on the input values under which consensus is
solvable?

“all processes propose the same value”

.... ?

The Model

 processes,

At most can crash, where

Shared-memory system

Memory is organized in arrays (e.g.)

 can be read by any thorough

 can only be written by through

 can atomically read thorough

n p1, . . . , pn

f 0 ≤ f < n

X[1, . . . , n]

X[j] pi read(X[j])

X[i] pi write(v, X[i])

pi X snapshot(X)

Given and a set of input values , a condition defines
the set of all vectors over that can be proposed

An -fault tolerant protocol solves consensus for a condition
! if in every execution whose input vector belongs to ,
the protocol satisfies the following properties:

Validity: A decided value is a proposed value
Agreement: No two processes decide differently
BestEffort_Termination: every correct process decides if
(i) in and no more than failures or
(ii) all processes are correct or
(iii) a process decides

The Problem
n, f, V C

V

C J V
n
f

f

CfJ f

Given and a set of input values , a condition defines
the set of all vectors over that can be proposed

An -fault tolerant protocol solves consensus for a condition
! if in every execution whose input vector belongs to ,
the protocol satisfies the following properties:

Validity: A decided value is a proposed value
Agreement: No two processes decide differently
BestEffort_Termination: every correct process decides if
(i) in and no more than failures or
(ii) all processes are correct or
(iii) a process decides

The Problem
n, f, V C

V

C J V
n
f

f

CfJ f

 at most
 entries

f

⊥

Conditions and Consensus

Theorem 1 If is -acceptable, then there
exists an -fault tolerant protocol solving
consensus for

f

f

C

C

Given and , let be a predicate on , and a
function defined on (not necessarily all)

A condition is acceptable if there exists and s.t. :

i)

ii)

iii) a non- value of

Given two vectors A and B, we write A ≤ B if

Acceptable Conditions

V V
n
fP S

C

f

V
n
f

P S

TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = ⊥ J

∀k : A[k] "= ⊥ ⇒ A[k] = B[k]

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Two arrays of atomic registers

The Protocol
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Two arrays of atomic registers

 writes its input in
 repeatedly snapshots
until processes have
written their input values
in

The Protocol
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi Vi

pi V

n−f

V

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Two arrays of atomic registers

 tries to decide,
evaluating
If holds, then can
decide ,
otherwise it decides
In either case, writes
its decision value to
to help other processes
decide

The Protocol
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi

pi

P

piP

wi = S(Vi)

!

Wi

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Two arrays of atomic registers

 enters a loop, looking
for a decision value other
than
It may never find it: but
if detects all , it can
still decide!

The Protocol
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi

⊥,"

pi !

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Two arrays of atomic registers

 enters a loop, looking
for a decision value other
than
It may never find it: but
if detects all , it can
still decide!
all must have written
their input to
 decides by applying a
deterministic to
Note: termination is not
guaranteed!

The Protocol
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi

⊥,"

pi !

pj

vj V

pi

F V

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

BestEffort_Termination: every
correct process decides if
(i) in and no more than
failures or
(ii) all processes are correct or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let be a correct process

Termination
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

J Cf f

pi

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

BestEffort_Termination: every
correct process decides if
(i) in and no more than
failures or
(ii) all processes are correct or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let be a correct process

 does not block at (2) and
! therefore gets

 Since , then :
! from is true

 At (3), and at (6),
! at least

Termination
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

J Cf f

pi

pi

Vi ≤ J

Vi ∈ CfJ ∈ Cf

wi != ⊥,#

TC→P , P (Vi)

Wi[i] != ⊥,#

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

BestEffort_Termination: every
correct process decides if
(i) in and no more than
failures or
(ii) all processes are correct or
(iii) a process decides

Lemma 2 The protocol satisfies (ii)

Proof. Assume all processes are
correct

 They all exit the loop at (2)

 If they all find , they
all read at (5) and decide at (9)

Termination
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

J Cf f

¬P (Vi)

!

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

BestEffort_Termination: every
correct process decides if
.....
(iii) a process decides

Lemma 3 The protocol satisfies (iii)

Proof. Assume decides

 (and all correct processes)
! exit the loop at (2)

 If decides at (6) on
! ! ! ! , then all correct
! processes will find the same
! value and decide (6)

 If decides at (9), every
process wrote at (4) and every
correct process terminates at (9)

Termination
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

pi

Wi[j] != ",⊥

pi

pi

!

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Lemma 4 Either all processes
that decide do so at (6) or at (9)

Proof. Suppose decides at (6)

!For some j,

 No process can exit at (7)
! because its contained only

 If a process decides, it does so
! at (6)

Agreement
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

W [j] != ⊥,#

!W

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Lemma 4 Either all processes
that decide do so at (6) or at (9)

Proof. Suppose decides at (9)

! did exit the loop at (7)

!Every process evaluated to
! false and wrote to in (4)

 No process can decide at (6)

Agreement
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

! W

pi

P

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Lemma 5 No two processes decide
differently (Agreement)

Proof. Consider , that decide

!By Lemma 4, they decide on
! the same line–let it be (6)

! !
! and

!Both and hold (1)

! and come from snapshots.
! Hence (2)

!From (1), (2), and :
! and

Agreement
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi pj

∃V!, Vk : S(V!) = w! "= ⊥,$

S(Vk) = wk != ⊥,#

P (V!) P (Vk)

VkV!

V! ≤ Vk ∨ Vk ≤ V!

AP→S

S(V!) = S(Vk) w! = wk

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Lemma 5 No two processes decide
differently (Agreement)

Proof. Consider , that decide

!By Lemma 4, they decide on
! the same line–let it be (9)

!Each has executed (4):

!Each has executed (1):

 Hence

!Since both processors apply
! the same deterministic ,
! agreement follows

Agreement
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi pj

p! W [!] != ⊥

p! V [!] = v!

Yi = Yj = (v1, . . . , vn)

F

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Lemma 6 A decided value is a
proposed value (Validity)

Proof. Suppose at (6) decides
!

!Then, by (3), holds and,
! from , a
! non- value of

Validity
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

Wi[j] = wj != ⊥,#

P (Vj)

VP→S wj = S(Vj) =
⊥ J

(1)

(2) repeat until

(3) if then else

(4)

(5) repeat do

(6) if then return

(7) until

(8) do

(9) return

Lemma 6 A decided value is a
proposed value (Validity)

Proof. Suppose decides at (9)

!Then, by (7),

!All have written into

!Hence,

!Since outputs a value of ,
! Validity follows

Validity
write(vi, V [i])

Vi ← snapshot(V) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

∀j : Wi[j] "= ⊥

pj vj V [j]

Yi = [v1, . . . , vn]

F Yi

It gets really cool...

Theorem 1 If is -acceptable, then there
exists an -fault tolerant protocol solving
consensus for

f

f

C

C

It gets really cool...

Theorem 1 If is -acceptable, then there
exists an -fault tolerant protocol solving
consensus for

Theorem 2 If there exists an -fault tolerant
protocol solving consensus for , then is !
! -acceptable

f

f

C

C

f

f
C C

So, how do these
conditions look like?

C1 : (I ∈ C1) iff #1st(I) − #2nd(I) > f

P1(J) ≡ #1st(J) − #2nd(J)) > f − #⊥(J)

S1(J) = a : #a(J) = #1st(J)

C2 : (I ∈ C2) iff #max(I)(I) > f

P2(J) ≡ #max(J)(J) > f − #⊥(J)

S2(J) = max(J)

The Triumph
of Randomization

The Big Picture

Does randomization make for more powerful
algorithms?

Does randomization expand the class of problems solvable
in polynomial time?
Does randomization help compute problems fast in parallel
in the PRAM model?

The Big Picture

Does randomization make for more powerful
algorithms?

Does randomization expand the class of problems solvable
in polynomial time?
Does randomization help compute problems fast in parallel
in the PRAM model?

You tell me!

The Triumph of
Randomization?

Well, at least for distributed computations!

no deterministic 1-crash-resilient solution to
Consensus

 -resilient randomized solution to consensus
() for crash failures

randomized solution for Consensus exists even
for Byzantine failures!

f

f <n/2

A simple randomized
algorithm

M. Ben Or. “Another advantage of free choice: completely
asynchronous agreement protocols” (PODC 1983, pp. 27-30)

exponential number of operations per process
BUT more practical protocols exist

down to expected operations/process
 resilient

O(n log2n)

n−1

The protocol’s structure
An infinite repetition of asynchronous rounds

in round , only handles messages with
timestamp
each round has two phases
in the first, each broadcasts an a-value
which is a function of the b-values collected
in the previous round (the first a-value is
the input bit)
in the second, each broadcasts a b-value
which is a function of the collected a-values
decide stutters

r

pr

p

p

Ben Or’s Algorithm
 1: := input bit; := 1;

 2: repeat forever
 3: !{phase 1}
 4: !send to all
 5: !Let be the multiset of the first a-values with timestamp received
 6: !if then :=
 7:!else :=
 8:!{phase 2}
 9:!send to all
10:!Let be the multiset of the first b-values with timestamp received
11:!if then decide(v); :=
12:!else if then :=
13:!else := { is chosen uniformly at random to be 0 or 1}
14:! :=

ap r

(ap, r)

r

bp v

A

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

⊥bp

(bp, r)

n−f

n−f rB

(∃v ∈ {0, 1} : ∀b ∈ B : b = v) ap v

(∃b ∈ B : b #= ⊥) ap

ap

r+1r

b

$ $

Validity
 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Validity
All identical inputs ()
Each process set a-value :=
and broadcasts it to all
Since at most faulty, every
correct process receives at
least identical a-values in
round 1
Every correct process sets
b-value := and broadcasts it to
all
Again, every correct process
receives at least identical
b-values in round 1 and decides

n−f

n−f

f

i

i

i

i

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

A useful observation

Lemma For all , either .
! ! ! ! for all or .
! ! ! ! for all
bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

A useful observation

Lemma For all , either .
! ! ! ! for all or .
! ! ! ! for all

Proof By contradiction.
Suppose and at round such that
! = 0 and = 1
From lines 6,7 received distinct
0s, received distinct 1s.
Then, , implying
Contradiction

Corollary It is impossible that
two processes and decide
on different values at round

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

p q

r

2(n−f)≤n

n−f

n−f

p

p

q

bp,r bq,r

n≤2f

q r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Agreement
Let be the first round in which a
decision is made
Let be a process that decides in

r

p r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Agreement
Let be the first round in which a
decision is made
Let be a process that decides in
By the Corollary, no other process
can decide on a different value in
To decide, must have received
“ ” from distinct processes
every other correct process has
received “ ” from at least
By lines 11 and 12, every correct
process sets its new a-value to for
round to “ ”
By the same argument used to prove
Validity, every correct process that
has not decided “ ” in round will do
so by the end of round

r

p r

r

p n−f

n−2f ≥ 1

r+1

r+1

r

i

i

i

i

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Termination I
Remember that by Validity, if all
(correct) processes propose the
same value “ ” in phase 1 of
round . , then every correct
process decides “ ” in round .
The probability of all processes
proposing the same input value (a
landslide) in round 1 is

Pr[landslide in round 1] = .
What can we say about the
following rounds?

1/2
n

r

i

i

r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Termination II
In round r > 1, the a-values are not
necessarily chosen at random!
By line 12, some process may set its a-value
to a non-random value v
By the Lemma, however, all non-random
values are identical!
Therefore, in every r there is a positive
probability (at least) for a landslide
Hence, for any round r

Pr[no lanslide at round r] .
Since coin flips are independent:
Pr[no lanslide for first k rounds] .
When , this value is about 1/e; then, if

Pr[landslide within k rounds] ≥

which converges quickly to 1 as c grows

k = 2
n

k = c2
n

1/2
n

≤ (1 − 1/2n)k

≤ 1 − 1/2
n

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

1 − (1 − 1/2n)k
≈ 1 − 1/ec

