

The Part-Time Parliament

»
4\
\

w Lo san

@ Parliament determines / |

laws by passing sequence e
of numbered decrees o

@ Legislators can leave and - %f -
enter the chamber at
arbitrary times

@ No centralized record of
approved decrees-—

instead, each legislator
carries a ledger ANTIPAXOS . G

Government 101

@ No two ledgers contain contradictory
information

@ If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

O any decree proposed by a legislator would
eventually be passed

O any passed decree would appear on the
ledger of every legislator

Supplies

Each legislator receives

lots of

messengers
hourglass

pen with indelible ink

Back to the future

@ A set of processes that can propose values
@ Processes can crash and recover

@ Processes have access to stable storage

@ Asynchronous communication via messages

@ Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

@ Only a value that has been proposed can be chosen
@ Only a single value is chosen

@ A process never learns that a value has been
chosen unless it has been

LIVENESS

@ Some proposed value is eventually chosen

@ If a value is chosen, a process eventually learns it

The Players

@ Proposers
@ Acceptors

@ Learners

Choosing a value

O Use a single
acceptor

Choosing a value

Use a single
acceptor

A\

What if
the acceptor fails?

What if
the acceptor fails?

@ Choose only when a
“large enough” set
of acceptors accepts

What if
the acceptor fails?

@ Choose only when a
“large enough” set
of acceptors accepts

@ Using a majority set
guarantees that at
most one value is
chosen

What if

the acceptor fails?

i)
4
e

@ Choose only when a
“large enough” set

of acceptors accepts

@ Using a majority set
guarantees that at
most one value is
chosen

What if

the acceptor fails?

i)

\/@
* e

@ Choose only when a
“large enough” set

of acceptors accepts

@ Using a majority set
guarantees that at
most one value is
chosen

What if
the acceptor fails?

@ 6 IS chosen!

@ Choose only when a

of acceptors accepts

g @ “large enough” set
6 /

@ Using a majority set
@ guarantees that at
most one value is

chosen

Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen!
@ First requirement:

Pl: An acceptor must accept the first
proposal that it receives

Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen!
@ First requirement:

Pl: An acceptor must accept the first
proposal that it receives

@ ..but what if we have multiple proposers, each
proposing a different value?

Pl + multiple proposers

i)
4
e

Pl + multiple proposers

Pl + multiple proposers

No value is chosen!

/

Handling
multiple proposals

@ Acceptors must accept more than one proposal

@ To Keep frack of different proposals, assign a
natural number to each proposal

O A proposal is then a pair (psn, value)
O Different proposals have different psn

O A proposal is chosen when it has been
accepted by a majority of acceptors

O A value is chosen when a single proposal
with that value has been chosen

Choosing a unique value

@ We need to guarantee that all chosen
proposals result in choosing the same value

@ We introduce a second requirement (by
induction on the proposal number):

P2. If a proposal with value v is chosen,
then every higher-numbered proposal
that is chosen has value v

which can be satisfied by:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
accepted by any acceptor has value v

What about P17

@ Do we still need P17

YES, to ensure that some
proposal is accepted

What about P17

@ Do we still need P17

YES, to ensure that some
proposal is accepted

@ How well do Pl and P2a
play together?

What about P17

@ Do we still need P17

YES, to ensure that some
proposal is accepted

@ How well do Pl and P2a
play together?

Asynchrony is a problem...

What about P17

@ Do we still need P17

D YES, to ensure that some

proposal is accepted

O @ How well do P1 and P2a

play together?

O Asynchrony is a problem...

What about P17

@ Do we still need P17

D YES, to ensure that some

proposal is accepted

/ (1,6) @ How well do P1 and P2a

play together?

Asynchrony is a problem...

6 is chosen!

What about P17

How does it know
it should not accept? @ Do we still need P1?

a YES, to ensure that some
/ proposal is accepted
/ G @ How well do P1 and P2a

play together?

\ Asynchrony is a problem...
(1,6) Y Y P

6 IS chosen!

Another take on P2

@ Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal issued
by any proposer has value v

Implementing P2 (I)

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Suppose a proposer p wants to issue a proposal
numbered n. What value should p propose?

@ If (n’v) with n’ <n is chosen, then in every
majority set S of acceptors at least one acceptor
has accepted (n',v)...

@ ..so, if there always exists a majority set S
where no acceptor has accepted a proposal with
number less than n, then p can propose any value

Implementing P2 (II)

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

What if for all S some acceptor ends up
accepting a pair (n’,v) with n’ <n?

Claim: p should propose the value of the highest
numbered proposal among all accepted proposals
numbered less than #

Proof: By induction on the number of proposals
issued after a proposal is chosen

Implementing P2 (III)

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number 7 is issued, then there is a set S consisting of a
majority of acceptors such that either:

0 no acceptor in S has accepted any proposal numbered
less than 7, or

o v is the value of the highest-numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S

P2c in action

S
(4 8)

@ No acceptor in S

(< < 22) @ has accepted any
proposal numbered
less than n

P2c in action

(4,8)

@ v is the value of the
highest-numbered
proposal among all

\\,&?‘\ (3,2) proposals numbered
less than n and

accepted by the
(5.2) acceptors in S

P2c in action

S
: 2,2
\ @ v is the value of the

(3.2)

(4,1)

highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

P2c in action

| S
(18 1)
; 4 2,2
\ @ v is the value of the

highest-numbered
proposal among all

(3'2) proposals numbered
(less than » and

%} accepted by the
(5.2) acceptors in S

The invariant is violated

Future felling?

@ To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than #, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Future felling?

@ To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than #, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

@ Avoid predicting the future by extracting a
promise from a majority of acceptors not to
subsequently accept any proposals numbered
less than n

The proposers protocol (I)

@ A proposer chooses a new proposal number »n and sends

a request to each member of some set of acceptors,
asking it to respond with:

a. A promise never again to accept a proposal
numbered less than 7, and

b. The accepted proposal with highest number less
than z if any.

...call this a with number 7

The proposers protocol (II)

@ If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number n and value v, where v is

a. the value of the highest-numbered proposal
among the responses, or

b. is any value selected by the proposer if
responders refurned no proposals

A proposes issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.

..call this an accept request.

The acceptor's protocol

The acceptor's protocol

@ An accepftor receives and accept requests
from proposers. It can ignore these without
affecting safety.

The acceptor's protocol

@ An accepftor receives and accept requests
from proposers. It can ignore these without
affecting safety.

O It can always respond to a request

The acceptor's protocol

@ An accepftor receives and accept requests
from proposers. It can ignore these without
affecting safety.

O It can always respond to a request

0 It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

The acceptor's protocol

@ An accepftor receives and accept requests
from proposers. It can ignore these without
affecting safety.

O It can always respond to a request

0 It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

Pla: An acceptor can accept a proposal numbered
n iff it has not responded to a prepare
request having number greater than »

The acceptor's protocol

@ An accepftor receives and accept requests
from proposers. It can ignore these without
affecting safety.

O It can always respond to a request

0 It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

Pla: An acceptor can accept a proposal numbered
n iff it has not responded to a prepare
request having number greater than »

...which subsumes Pl.

Small optimizations

@ If an acceptor receives a request » numbered 7
when it has already responded to a request for
n’ >mn, then the acceptor can simply ignore r.

@ An acceptor can also ignore requests for
proposals it has already accepted

...50 an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered request to which it has
responded.

This information needs fo be stored on stable storage to
allow restarts.

Choosing a value:
Phase 1

@ A proposer chooses a new n and sends <prepare,n> to a
majority of acceptors

@ If an acceptor a receives <prepare,n’>, where n’ > n of
any <prepare,n> to which it has responded, then it
responds to <prepare, n’ > with

[0 a promise not to accept any more proposals
numbered less than n’

0 the highest numbered proposal (if any) that it has
accepted

Choosing a value:
Phase 2

@ If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

O the value of the highest numbered proposal
among the responses

O any value if the responses reported no proposals

@ If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded to
<prepare,n’> , Where n’ >n

Learning chosen
values (I)

Once a value is chosen, learners should find
out about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value

has been chosen
(418) Was 6
chosen?

DG
ool

(7,6)

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value

has been chosen
chosen?

p a
roPose Somefhln |

Liveness

Progress is not guaranteed:

n1<n2<n3<n4<...

P P2

<propose,n,>
<propose,n,>

<accep(n,,v,)>
<accep(n.,,v,)>
<propose,n>

<propose,n, >

A

Implementing State
Machine Replication

@ Implement a sequence of separate instances
of consensus, where the value chosen by the
ith instance is the i'" message in the sequence.

@ Each server assumes all three roles in each
instance of the algorithm.

@ Assume that the set of servers is fixed

The role of the leader

@ In normal operation, elect a single server to be
a leader. The |leader acts as the distinguished

proposer in all instances of the consensus
algorithm.

O Clients send commands fo the leader, which decides
where in the sequence each command should appear.

O If the leader, for example, decides that a client
command is the k™ command, it tries to have the

command chosen as the value in the k™ instance of
consensus.

A new leader)\ is elected...

@ Since)\ is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

0O It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

O This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

O A then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

Stop-gap measures

@ All replicas can execute commands 1-10, but not
13-16 because 11 and 12 haven't yet been chosen.

@ A can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

@) runs phase 2 of consensus for instance numbers 11
and 12.

@ Once consensus is achieved, all replicas can execute
all commands through 16.

To infinity, and beyond

@) can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

0O A just sends a message with a sufficiently high
proposal number for all instances

O An acceptor replies non frivially only for instances for
which it has already accepted a value

Paxos and FLP

@ Paxos is always safe-despite asynchrony
@ Once a leader is elected, Paxos is live.

@ "Ciao ciao” FLP?

O To be live, Paxos requires a single leader

O "Leader election” is impossible in an
asynchronous system (gotcha!)

@ Given FLP, Paxos is the next best thing:
always safe, and live during periods of synchrony

Around FLP in 80 Slides

Condition-based
consensus

@ Is it possible to identify the set of conditions
on the input values under which consensus is
solvable?

Condition-based
consensus

@ Is it possible to identify the set of conditions
on the input values under which consensus is
solvable?

A\ 4
O all processes propose the same value

e

@ © @ @ @ Q@ @

The Model

n processes, Di,...,Dn
At most [can crash, where 0 < f <n
Shared-memory system

Memory is organized in arrays (e.g. X|[1,...,n])

X|[j] can be read by any p; thorough read(X|j])

X[i] can only be written by p; through write(v, X |t])

p; can atomically read X thorough snapshot(X)

The Problem

@ Given n, f,and a set of input values V], a condition C defines
the set of all vectors over V that can be proposed

@ An f-fault tolerant protocol solves consensus for a condition
C if in every execution whose input vector J belongs to V¢,
the protocol satisfies the following properties:

O Validity: A decided value is a proposed value

O Agreement: No two processes decide differently

O BestEffort_Termination: every correct process decides if
(i) J inCs and no more than f failures or
(ii) all processes are correct or
(iii) a process decides

The Problem

@ Given n, f,and a set of input values V], a condition C defines
the set of all vectors over V that can be proposed

@ An f-fault tolerant protocol solves consensus for a condition
C if in every execution whose input vector J belongs to V¢,
the protocol satisfies the following properties:

‘at most f
| entries

O Validity: A decided value is a proposed value
O Agreement: No two processes decide differently
O BestEffort_Termination: every correct process decides if
(i) J inCs and no more than f failures or
(ii) all processes are correct or
(iii) a process decides

Conditions and Consensus

Theorem 1 If C is f-acceptable, then there
exists an f-fault folerant protocol solving
consensus for C

Acceptable Conditions

Given f and V, let P be a predicate on V¥, and S a
function defined on (not necessarily all) V¥

A condition C is acceptable if there exists ° and S s.t. :
i) Tep:IeC=VJeZ;: P(J)

i) Ap_g:VJ1,J2 € Vi
(J1 < J2)A PJIYAPH2) = S(JIW'=5(J2)
iii) Vp_s :VJ € V} : P(J) = S(J) = a non-L value of .J

Given two vectors A and B, we write A< B if
Vk: Alk| # L = Alk] = B|k|

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

The Protocol

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

Two arrays of atomic registers
VAL e L M
W1, .. Snl= (e S

The Protocol

(1) write(v;, Vi)

(2) repeat V; < snapshot(V) until |V;| > n—f

(3) if P(V;) then w; — S(V;) else w; «— T

(&) write(ws, W)

(5) repeat Vjell,..., n] do W;[j] < read(W[j])
) if 37 :Wilj] # L, T then return(W;[j])
(7) until (L € W)

(8) Vjell,...,n]do Y;i[j] — read(V[j])

(9) return(F(Y;))

Two arrays of atomic registers
VAL e L M
W1, .. Snl= (e S

O p; writes its input in V;
O p; repeatedly snapshots V'

until n—f processes have

written their input values
in V'

The Protocol

(1) write(v;, Vi)

(2) repeat V; «— snapshot(V) until |V;| > n—f

(3) if P(V;) then w; — S(V;) else w; «— T

(&) write(ws, W)

(5) repeat Vjell,..., n] do W;[j] < read(W[j])
) if 37 :Wilj] # L, T then return(W;[j])
(7) until (L € W)

(8) Vjell,...,n]do Yi[j] — read(V[j])

(9) return(F(Y7))

Two arrays of atomic registers
VAL e L M
W1, .. Snl= (e S

[N

[

p; tries to decide,
evaluating P

If P holds, then p; can
decide w; = S(V;),
otherwise it decides T

In either case, p; writes
its decision value to W,

to help other processes
decide

The Protocol

(1) write(v;, Vi)

(2) repeat V; < snapshot(V) until |V;| > n—f

(3) if P(V;) then w; — S(V;) else w; «— T

(&) write(ws, W)

(5) repeat Vjell,..., n] do W;[j] — read(W[j])
(6) if 35 :Wilj] # L, T then return(W;[j])
(7) until (L € W)

(8) Vjell,...,n]do Y;i[j] — read(V[j])

(9) return(F(Y;))

Two arrays of atomic registers
VAL e L M
W1, .. Snl= (e S

O p; enters a loop, looking
for a decision value other
than 1, T

0O It may never find it: but
if p; detects all T, it can
still decide!

(1)
(2)
(3)
(4)

The Protocol

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f
if P(V;) then w; — S(V;) else w; «— T
write(w;, Wi])

(5)
©)
(7)
(8)
(9)

repeat Vj€[l,..., n] do W;[j] < read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L & W;)

Vjie[l,...,n] do Y;[j] — read(V]j])

return(F(Y;))

Two arrays of atomic registers
VAL e L M
W1, .. Snl= (e S

O p; enters a loop, looking
for a decision value other
than 1, T

0O It may never find it: but
if p; detects all T, it can
still decide!

0O all p; must have written
their input v; to V

O p; decides by applying a
deterministic /' to V

O Note: termination is not
guaranteed!

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Termination

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

BestEffort_Termination: every
correct process decides if

(i) J in Ct and no more than f
failures or

(ii) all processes are correct or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let p; be a correct process

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Termination

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

BestEffort_Termination: every
correct process decides if

(i) J in Ct and no more than f
failures or

(ii) all processes are correct or
(iii) a process decides

Lemma 1 The protocol satisfies (i)
Proof. Let p; be a correct process

O pi does not block at (2) and
therefore gets V; < J

O Since J GCf, then V; ECf:
from Tc_.p, P(V;) is true

O At (3), w; # L, T and at (6),
at least W;[i] # L, T

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Termination

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

BestEffort_Termination: every
correct process decides if

(i) J inCs and no more than f
failures or

(i) all processes are correct or
(iii) a process decides

Lemma 2 The protocol satisfies (ii)

Proof. Assume all processes are
correct

O They all exit the loop at (2)

O If they all find -P(V;) , they
all read T at (5) and decide at (9)

(1)
(2)
€©)
(4)
(5)
(6)
(7)
(8)
(9)

1)

Termination

write(vs, V]i])

repeat V; « snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, WTi])

repeat Vj € [1,...,n] do W;[j] « read(Wj])
if 37 :Wilj] # L, T then return(W;[j])

until (L ¢ W;)

Vjell,...,n] do Yi[j] — read(V[j])

return(F(Y;))

TCHPZIEC:>VJEZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

BestEffort_Termination: every
correct process decides if

(iii) a process decides

Lemma 3 The protocol satisfies (iii)
Proof. Assume p; decides

O p; (and all correct processes)
exit the loop at (2)

O If p; decides at (6) on
W;lj] # T, L, then all correct
processes will find the same
value and decide (6)

D If p; decides at (9), every
process wrote T at (4) and every
correct process terminates at (9)

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Agreement

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

Lemma 4 Either all processes
that decide do so at (6) or at (9)

Proof. Suppose p; decides at (6)
B For some j, W|j] # L, T

0O No process can exit at (7)
because its W contained only T

0O If a process decides, it does so
at (6)

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Agreement

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

Lemma 4 Either all processes
that decide do so at (6) or at (9)

Proof. Suppose p; decides at (9)
D p; did exit the loop at (7)

O Every process evaluated P to
false and wrote T to Win (4)

0O No process can decide at (6)

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Agreement

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

Lemma 5 No two processes decide
differently (Agreement)

Proof. Consider p;, P; that decide

O By Lemma 4, they decide on
the same line-let it be (6)

A HVg,Vk . S(W) = Wy # J_,T
and S(Vi) =wg # L, T

0O Both P(V;) and P(V%) hold

0O Vg and Vi, come from snapshots.
Hence Vi, < ViV Vi <V,

0 From (1), (2), and Ap_.5 :
S(Vg) = S(Vk) and Wy = Wi

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Agreement

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC:>VJGZJ¢:P(J)

ZZ) Ap_>5 :VJl,J2 = V}I :

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

Lemma 5 No two processes decide
differently (Agreement)

Proof. Consider p;, P; that decide

O By Lemma 4, they decide on
the same line-let it be (9)

O Each pr has executed (4): W[/] # L
O Each P¢ has executed (1): V[{] = vy
Eiencedle =¥ "= (v1,...,v,)

O Since both processors apply
the same deterministic F,
agreement follows

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Validity

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC——?VJGZJCZP(J)

i) Ap_s:VJ1,J2€ V7!

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

Lemma 6 A decided value is a
proposed value (Validity)

Proof. Suppose p; at (6) decides
Wiljl=w; # L, T

O Then, by (3), P(V;) holds and,
fromiel e i — S(V;) =a
non-.1 value of J

(1)
(2)
(3)
(4)
(5)
©)
(7)
(8)
(9)

1)

Validity

write(v;, Vi])

repeat V; < snapshot(V) until |V;| > n—f

if P(V;) then w; — S(V;) else w; «— T

write(w;, Wi])

repeat Vj € [1,...,n] do W;[j] « read(W[j])
if 3j:Wilj] # L, T then return(W;[j])

until (L € W)

Vi €ll,...,n] do Yi[j] « read(Vj])

return(F(Y;))

TCHPZIEC——?VJGZJCZP(J)

i) Ap_s:VJ1,J2€ V7!

iit) Vp_gs:VJ € Vy: P(J)= S(J)=anon-1 value of J

(J1 < J2) A P(J1) A P(J2) = S(J1) = S(J2)

Lemma 6 A decided value is a
proposed value (Validity)

Proof. Suppose p; decides at (9)
O Then, by (7), Vj: W;[j] # L

D All p; have written v; into V[j]
O Hence, Y; = [v1,...,v,]

O Since F' outputs a value of Y,
Validity follows

It gets really cool...

@ Theorem 1 If C is j-acceptable, then there
exists an f-fault tolerant protocol solving
consensus for C

It gets really cool...

@ Theorem 1 If C is j-acceptable, then there
exists an f-fault tolerant protocol solving
consensus for C

@ Theorem 2 If there exists an /-fault tolerant
protocol solving consensus for C, then C is
J-acceptable

So, how do these
conditions look like?
Cl : (I = 01) Zﬁ #1375(]) o #Qnd(I) P f

Pi(J) = #15t(J) — #analJ)) > f—#1.(J)
S1llFE=a i, (o)i

Cy: (I € Cy) iff #maxnd) > f
P (J) = #Fmaxn)(J) > f —#1(J)
SQ(J) — maX(J)

The Triumph
of Randomization

The Big Picture

@ Does randomization make for more powerful
algorithms?

0 Does randomization expand the class of problems solvable
in polynomial time?

0 Does randomization help compute problems fast in parallel
in the PRAM model?

The Big Picture

@ Does randomization make for more powerful
algorithms?

0 Does randomization expand the class of problems solvable
in polynomial time?

0 Does randomization help compute problems fast in parallel
in the PRAM model?

You tell me!

The Triumph of
Randomization?

Well, at least for distributed computations!

@ no deterministic 1-crash-resilient solution to
consensus

@ f-resilient randomized solution to consensus
(f <n/2) for crash failures

@ randomized solution for Consensus exists even
for Byzantine failures!

A simple randomized
algorithm

M. Ben Or. “Another advantage of free choice: completely
asynchronous agreement protocols” (PODC 1983, pp. 27-30)

@ exponential number of operations per process
@ BUT more practical protocols exist
o down to O(nlog®n)expected operations/process

0O n—1resilient

The protocols structure

An infinite repetition of asynchronous rounds

@ in round r, p only handles messages with
timestamp r

@ each round has two phases

@ in the first, each p broadcasts an a-value
which is a function of the b-values collected
in the previous round (the first a-value is
the input bit)

@ in the second, each p broadcasts a b-value
which is a function of the collected a-values

@ decide stutters

Ben Or's Algorithm

—

i ap= input bit; r:=1;

repeat forever

{phase 1}

send (a,,r)to all

Let A be the multiset of the first n— f a-values with timestamp r received
if (Jve{0,1} :Yae€ A:a=wv) then b,:= v

else b,:= L

{phase 2}

send (b,,) to all

10: Let Bbe the multiset of the first n— f b-values with timestamp r received
11:if (Jv e {0,1} : Vb € B : b=wv)then decide(v); az= v

12:else if (b€ B:b+# L)then ag= b

13: else a,:=$ {$ is chosen uniformly at random to be O or 1}

14: r:=r+1

2000 N0 - Ui et

u p w7

O 00 N o

11:

12:
13:

14:

Validity

ap = input bit; r:=1;

: repeat forever
: {phase 1}
:send (ayp,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

Dif (Jv € {9 1 s vaiCaARse =D =
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv e {0,1} :Vb e B:b=wv) then decide(v); ap:=v
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}
5=l

O 00 N o

11:

12:
13:

14:

u p w7

Validity

ap = input bit; r:=1;

: repeat forever
: {phase 1}
:send (ayp,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

2 if (Fv € {9 L s Vo AtSa S=NSEaNi D, =5
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv e {0,1} :Vb e B:b=wv) then decide(v); ap:=v
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}
5=l

All identical inputs (7)

Each process set a-value :=;
and broadcasts it to all

Since at most f faulty, every
correct process receives at
least n— f identical a-values in
round 1

Every correct process sets
b-value := i and broadcasts it to
all

Again, every correct process
receives at least n— f identical ;
b-values in round 1 and decides

u p w7

O 00 N o

11:

12:
13:

14:

A useful observation

ap = input bit; r:=1;

: repeat forever
: {phase 1}
:send (ayp,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

2 if (Fv € {9 L s Vo AtSa S=NSEaNi D, =5
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv e {0,1} :Vb e B:b=wv) then decide(v); ap:=v
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}
5=l

Lemma

bp,"”‘ = {17 J—}
by € 10,1}

For all r, either
for all p or

for all p

u p w7

O 00 N o

11:

12:
13:

14:

A useful observation

ap = input bit; r:=1;

: repeat forever
: {phase 1}
:send (ayp,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

2 if (Fv € {9 L s Vo AtSa S=NSEaNi D, =5
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv e {0,1} :Vb e B:b=wv) then decide(v); ap:=v
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}
5=l

Lemma For all 7, either
bpr € {1,1} foralp or
bp,r = {Oa J—} FOI” Cllb
Proof By contradiction.

Suppose p and g at round r such that
bp,r = 0 and bqﬂa ik

From lines 6,7 p received n— f distinct
Os, g received n—f distinct ls.

Then, 2(n— f)<n, implying n<2f

Corollary It is impossible that
two processes p and q decide
on different values at round r

u p w7

O 00 N o

11:

12:
13:

14:

Agreement

ap = input bit; r:=1;

: repeat forever
: {phase 1}
:send (ayp,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

2 if (Fv € {9 L s Vo AtSa S=NSEaNi D, =5
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv € {0,1} : Vb€ B :b=v) then decide(v);
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}

ap:= v

= Al

@ Let r be the first round in which a
decision is made

@ Let p be a process that decides in r

ily
2:
3:
4:

5

O 00 N o

11:

12:
13:

14:

Agreement

ap = input bit; r:=1;

repeat forever

{phase 1}

send (a,,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

2 if (Fv € {9 L s Vo AtSa S=NSEaNi D, =5
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv € {0,1} : Vb€ B :b=v) then decide(v);
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}

ap:= v

= Al

@ Let r be the first round in which a
decision is made

@ Let p be a process that decides in r

@ By the Corollary, no other process
can decide on a different value in r

@ To decide, p must have received n— f

\N\-¥W

i~ from distinct processes

@ every other correct process has
received i “ from at least n—2f > 1

@ By lines 11 and 12, every correct
process sets its new a-value to for

A\ W/}

round r+1to

@ By the same argument used to prove
Validity, every correct process that
has not decided “i” in round r will do
so by the end of round r+1

O 00 N o

11:
12:
13:

14:

u p w7

Termination 1

ap = input bit; r:=1;

: repeat forever
: {phase 1}
:send (ayp,r)to all

Let A be the multiset of the first n— f a-values with
timestamp r received

2 if (Fv € {9 L s Vo AtSa S=NSEaNi D, =5
:else byi= L

: {phase 2}

: send (b, 7) to all

10:

Let B be the multiset of the first n— f b-values with
timestamp r received
if(Jv e {0,1} :Vb e B:b=wv) then decide(v); ap:=v
else if(3be B:b# L) then ap= b
else a,:= $ {$is chosen uniformly at random
to be O or 1}
5=l

@ Remember that by Validity, if all
(correct) processes propose the
same value " “ in phase 1 of
round 7, then every correct
process decides “2” in round 7.

@ The probability of all processes
proposing the same input value (a
landslide) in round 1 is

Prlandslide in round 1] = 1/2"

@ What can we say about the
following rounds?

1:

2

w

4:

)

O 00 N o

10:

11:

12:
13:

14:

Termination 11

a, = input bit; 7= 1;

: repeat forever
: {phase 1}
send (ap,r)to all

Let A be the multiset of the first n— f a-values with

timestamp r received

:if (Gve{0,1}:Va € A:a=v)then b,:= v

: else by il

: {phase 2}
: send (bp,) to all

Let B be the multiset of the first n— f b-values with

timestamp r received

if (v € {0,1} : Vb € B:b=v) then decide(v); ap:=v
elseif(3be B:b# 1) then ay:=b
else a,:=$ {$is chosen uniformly at random

r.=r+1

to be O or 1}

@ In round r > 1, the a-values are not
necessarily chosen at random!

@ By line 12, some process may set its a-value
to a non-random value v

@ By the Lemma, however, all non-random
values are identical!

@ Therefore, in every r there is a positive
probability (at least 1/2") for a landslide

@ Hence, for any round r
Pr[no lanslide at round r] <1—1/2"

@ Since coin flips are independent:

Prlno lanslide for first k rounds] < (1 —1/2")%
@ When k. = 27 this value is about 1/e; then, if

ki—vedl
Prllandslide within k rounds] =
Il 10 RS
which converges quickly to 1 as ¢ grows

