
Paxos



The Part-Time Parliament

Parliament determines 
laws by passing sequence 
of numbered decrees
Legislators can leave and 
enter the chamber at 
arbitrary times
No centralized record of 
approved decrees–
instead, each legislator 
carries a ledger



Government 101

No two ledgers contain contradictory 
information

If a majority of legislators were in the 
Chamber and no one entered or left the 
Chamber for a sufficiently long time, then 

any decree proposed by a legislator would 
eventually be passed
any passed decree would appear on the 
ledger of every legislator 



Supplies
Each legislator receives

                      

ledger

pen with indelible ink

scratch paper

hourglass

lots of 
messengers



Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not 
corrupted



The Game: Consensus

SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been 
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it



The Players

Proposers

Acceptors

Learners



Choosing a value

Use a single 
acceptor
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What if 
the acceptor fails?

Choose only when a 
“large enough” set 
of acceptors accepts

Using a majority set 
guarantees that at 
most one value is 
chosen

6

6

6
6 is chosen!
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Accepting a value

Suppose only one value is proposed by a single 
proposer.

That value should be chosen!

First requirement:

P1:  An acceptor must accept the first !
! proposal that it receives



Accepting a value

Suppose only one value is proposed by a single 
proposer.

That value should be chosen!

First requirement:

P1:  An acceptor must accept the first !
! proposal that it receives

...but what if we have multiple proposers, each 
proposing a different value?



P1 + multiple proposers
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P1 + multiple proposers

5
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No value is chosen!



Handling 
multiple proposals

Acceptors must accept more than one proposal

To keep track of different proposals, assign a 
natural number to each proposal

A proposal is then a pair (psn, value)

Different proposals have different psn

A proposal is chosen when it has been 
accepted by a majority of acceptors

A value is chosen when a single proposal 
with that value has been chosen



Choosing a unique value
We need to guarantee that all chosen 
proposals result in choosing the same value

We introduce a second requirement (by 
induction on the proposal number):
P2. If a proposal with value v is chosen, 
! then every higher-numbered proposal 
! that is chosen has value v
which can be satisfied by:
P2a. If a proposal with value v is chosen, 
! then every higher-numbered proposal 
! accepted by any acceptor has value v



What about P1?
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What about P1?

Do we still need P1?

YES, to ensure that some 
proposal is accepted 

How well do P1 and P2a 
play together?

Asynchrony is a problem...

(1,6)

(1,6)

6 is chosen!



5

7

6

2

(2,7)

What about P1?

Do we still need P1?

YES, to ensure that some 
proposal is accepted 

How well do P1 and P2a 
play together?

Asynchrony is a problem...

(1,6)

(1,6)

6 is chosen!

How does it know
it should not accept?



Another take on P2

Recall P2a:

If a proposal with value v is chosen, then 
every higher-numbered proposal accepted by 
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen, 
then every higher-numbered proposal issued 
by any proposer has value v



Implementing P2 (I)

Suppose a proposer p wants to issue a proposal 
numbered n. What value should p propose?

If (n’,v) with n’ < n is chosen, then in every 
majority set S of acceptors at least one acceptor 
has accepted (n’,v)...

...so, if there always exists a majority set S 
where no acceptor has accepted a proposal with 
number less than n, then p can propose any value

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v



Implementing P2 (II)

What if for all S some acceptor ends up 
accepting a pair (n’,v) with n’ < n?

Claim: p should propose the value of the highest 
numbered proposal among all accepted proposals 
numbered less than n

Proof: By induction on the number of proposals 
issued after a proposal is chosen

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v



Implementing P2 (III)

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and 
number n is issued, then there is a set S consisting of a 
majority of acceptors such that either:

no acceptor in S has accepted any proposal numbered 
less than n, or
v is the value of the highest-numbered proposal 
among all proposals numbered less than n accepted 
by the acceptors in S

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v



P2c in action

No acceptor in S 
has accepted any 
proposal numbered 
less than n

(4,8)

(1,5)

(5,2)

S

(2,7)



P2c in action

v is the value of the 
highest-numbered 
proposal among all 
proposals numbered 
less than n and 
accepted by the 
acceptors in S

(4,8)

(3,2)

(5,2)

S

(18,2)



P2c in action

v is the value of the 
highest-numbered 
proposal among all 
proposals numbered 
less than n and 
accepted by the 
acceptors in S

(2,2)

(3,2)

(4,1)

S(18,1)



P2c in action

v is the value of the 
highest-numbered 
proposal among all 
proposals numbered 
less than n and 
accepted by the 
acceptors in S

(2,2)

(3,2)

S(18,1)

(5,2)
(5,2)

The invariant is violated



Future telling?

To maintain P2c, a proposer that wishes to 
propose a proposal numbered n must learn 
the highest-numbered proposal with number 
less than n, if any, that has been or will be 
accepted by each acceptor in some majority 
of acceptors



Future telling?

To maintain P2c, a proposer that wishes to 
propose a proposal numbered n must learn 
the highest-numbered proposal with number 
less than n, if any, that has been or will be 
accepted by each acceptor in some majority 
of acceptors

Avoid predicting the future by extracting a 
promise from a majority of acceptors not to 
subsequently accept any proposals numbered 
less than n



 The proposer’s protocol (I)

A proposer chooses a new proposal number n and sends 
a request to each member of some set of acceptors, 
asking it to respond with:

a. A promise never again to accept a proposal 
numbered less than n, and

b. The accepted proposal with highest number less 
than n if any.

...call this a prepare request with number n



 The proposer’s protocol (II)
If the proposer receives a response from a majority 
of acceptors, then it can issue a proposal with 
number n and value v, where v is 

a. the value of the highest-numbered proposal 
among the responses, or 

b. is any value selected by the proposer if 
responders returned no proposals

A proposes issues a proposal by sending, to some set of 
acceptors, a request that the proposal be accepted.  
...call this an accept request.



 The acceptor’s protocol
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 The acceptor’s protocol
An acceptor receives prepare and accept requests 
from proposers. It can ignore these without 
affecting safety.

It can always respond to a prepare request
It can respond to an accept request, accepting 
the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered 
! ! n iff it has not responded to a prepare 
! ! request having number greater than n

...which subsumes P1.



Small optimizations

If an acceptor receives a prepare request r numbered n 
when it has already responded to a prepare request for 
n’ > n, then the acceptor can simply ignore r.

An acceptor can also ignore prepare requests for 
proposals it has already accepted

...so an acceptor needs only remember the highest 
numbered proposal it has accepted and the number of 
the highest-numbered prepare request to which it has 
responded.

This information needs to be stored on stable storage to 
allow restarts.



Choosing a value:
Phase 1

A proposer chooses a new n and sends <prepare,n> to a 
majority of acceptors

If an acceptor a receives <prepare,n’>, where n’ > n of 
any <prepare,n> to which it has responded, then it 
responds to <prepare, n’ > with 

a promise not to accept any more proposals 
numbered less than n’

the highest numbered proposal (if any) that it has 
accepted



Choosing a value:
Phase 2

If the proposer receives a response to <prepare,n> 
from a majority of acceptors, then it sends to each 
<accept,n,v>, where v is either

the value of the highest numbered proposal 
among the responses
any value if the responses reported no proposals

If an acceptor receives <accept,n,v>, it accepts the 
proposal unless it has in the meantime responded to 
<prepare,n’> , where n’ > n 



Learning chosen 
values (I)

Once a value is chosen, learners should find 
out about it. Many strategies are possible:

i. Each acceptor informs each learner 
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner, 
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)



Learning chosen 
values (II)

Because of failures (message loss and acceptor 
crashes) a learner may not learn that a value 
has been chosen

☠

(4,8)

(7,6)

Was 6 
chosen?



Learning chosen 
values (II)

Because of failures (message loss and acceptor 
crashes) a learner may not learn that a value 
has been chosen

☠

(4,8)

(7,6)

Was 6 
chosen?

Propose something!



Liveness

Progress is not guaranteed:
n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e



Implementing State 
Machine Replication

Implement a sequence of separate instances 
of consensus, where the value chosen by the 
ith instance is the ith message in the sequence.

Each server assumes all three roles in each 
instance of the algorithm.

Assume that the set of servers is fixed



The role of the leader

In normal operation, elect a single server to be 
a leader. The leader acts as the distinguished 
proposer in all instances of the consensus 
algorithm.

Clients send commands to the leader, which decides 
where in the sequence each command should appear.

If the leader, for example, decides that a client 
command is the kth command, it tries to have the 
command chosen as the value in the kth instance of 
consensus.



A new leader   is elected...

Since    is a learner in all instances of consensus, it 
should know most of the commands that have 
already been chosen. For example, it might know 
commands 1-10, 13, and 15.

It executes phase 1 of instances 11, 12, and 14 and 
of all instances 16 and larger. 

This might leave, say, 14 and 16 constrained and 
11, 12 and all commands after 16 unconstrained.

  then executes phase 2 of 14 and 16, thereby 
choosing the commands numbered 14 and 16

λ

λ

λ



Stop-gap measures

All replicas can execute commands 1-10, but not 
13-16 because 11 and 12 haven't yet been chosen.

   can either take the next two commands requested 
by clients to be commands 11 and 12, or can propose 
immediately that 11 and 12 be no-op commands.

   runs phase 2 of consensus for instance numbers 11 
and 12.

Once consensus is achieved, all replicas can execute 
all commands through 16.

λ

λ



To infinity, and beyond

  can efficiently execute phase 1 for infinitely 
many instances of consensus! (e.g. command 16 
and higher)

   just sends a message with a sufficiently high 
proposal number for all instances

An acceptor replies non trivially only for instances for 
which it has already accepted a value

λ

λ



Paxos and FLP

Paxos is always safe–despite asynchrony

Once a leader is elected, Paxos is live.

“Ciao ciao” FLP?

To be live, Paxos requires a single leader
“Leader election” is impossible in an 
asynchronous system (gotcha!)

Given FLP, Paxos is the next best thing: !   
always safe, and live during periods of synchrony



Around FLP in 80 Slides



Condition-based 
Consensus

Is it possible to identify the set of conditions 
on the input values under which consensus is 
solvable?



Condition-based 
Consensus

Is it possible to identify the set of conditions 
on the input values under which consensus is 
solvable?

“all processes propose the same value”

.... ?



The Model

   processes, 

At most   can crash, where 

Shared-memory system 

Memory is organized in arrays (e.g.              ) 

      can be read by any    thorough

      can only be written by    through

   can atomically read    thorough

n p1, . . . , pn

f 0 ≤ f < n

X[1, . . . , n]

X[j] pi read(X[j])

X[i] pi write(v, X[i])

pi X snapshot(X)



Given      and a set of input values  , a condition   defines 
the set of all vectors over   that can be proposed

An  -fault tolerant protocol solves consensus for a condition    
! if in every execution whose input vector   belongs to    , 
the protocol satisfies the following properties:

Validity: A decided value is a proposed value
Agreement: No two processes decide differently
BestEffort_Termination: every correct process decides if
(i)    in     and no more than   failures   or
(ii) all processes are correct  or
(iii) a process decides

The Problem
n, f, V C

V

C J V
n
f

f

CfJ f
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An  -fault tolerant protocol solves consensus for a condition    
! if in every execution whose input vector   belongs to    , 
the protocol satisfies the following properties:

Validity: A decided value is a proposed value
Agreement: No two processes decide differently
BestEffort_Termination: every correct process decides if
(i)    in     and no more than   failures   or
(ii) all processes are correct  or
(iii) a process decides

The Problem
n, f, V C

V

C J V
n
f

f

CfJ f

  at most    
 entries 

f

⊥



Conditions and Consensus

Theorem 1 If   is  -acceptable, then there 
exists an  -fault tolerant protocol solving 
consensus for 

f

f

C

C



Given   and   , let   be a predicate on   , and   a 
function defined on (not necessarily all) 

A condition   is acceptable if there exists  and   s.t. :

i)  

ii)  

iii)                                           a non-  value of 

Given two vectors A and B, we write A ≤ B if
         

Acceptable Conditions

V V
n
fP S

C

f

V
n
f

P S

TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = ⊥ J

∀k : A[k] "= ⊥ ⇒ A[k] = B[k]



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Two arrays of atomic registers

The Protocol
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Two arrays of atomic registers

   writes its input in 
   repeatedly snapshots  
until       processes have 
written their input values 
in 

The Protocol
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi Vi

pi V

n−f

V



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Two arrays of atomic registers

   tries to decide, 
evaluating
If   holds, then    can 
decide              , 
otherwise it decides 
In either case,    writes 
its decision value to      
to help other processes 
decide 

The Protocol
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi

pi

P

piP

wi = S(Vi)

!

Wi
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(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Two arrays of atomic registers

   enters a loop, looking 
for a decision value other 
than 
It may never find it: but 
if    detects all   , it can 
still decide!

The Protocol
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi

⊥,"

pi !



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Two arrays of atomic registers

   enters a loop, looking 
for a decision value other 
than 
It may never find it: but 
if    detects all   , it can 
still decide!
all    must have written    
their input    to 
   decides by applying a 
deterministic   to 
Note: termination is not 
guaranteed!

The Protocol
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

V [1, . . . , n] := [⊥, . . . ,⊥]

W [1, . . . , n] := [⊥, . . . ,⊥]

pi

⊥,"

pi !

pj

vj V

pi

F V



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

BestEffort_Termination: every 
correct process decides if
(i)      in     and no more than   
failures   or
(ii)  all processes are correct  or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let    be a correct process

 

Termination
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

J Cf f

pi



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

BestEffort_Termination: every 
correct process decides if
(i)      in     and no more than   
failures   or
(ii)  all processes are correct  or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let    be a correct process

     does not block at (2) and 
! therefore gets 

 Since         , then          : 
! from                 is true

  At (3),              and at (6), 
! at least 

Termination
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

J Cf f

pi

pi

Vi ≤ J

Vi ∈ CfJ ∈ Cf

wi != ⊥,#

TC→P , P (Vi)

Wi[i] != ⊥,#



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

BestEffort_Termination: every 
correct process decides if
(i)      in     and no more than   
failures   or
(ii)  all processes are correct  or
(iii) a process decides

Lemma 2 The protocol satisfies (ii)

Proof. Assume all processes are 
correct

 They all exit the loop at (2)

 If they all find          , they 
all read   at (5) and decide at (9)

 

Termination
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

J Cf f

¬P (Vi)

!



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

BestEffort_Termination: every 
correct process decides if
.....
(iii) a process decides

Lemma 3 The protocol satisfies (iii)

Proof. Assume     decides

     (and all correct processes) 
! exit the loop at (2)

 If     decides at (6) on 
! ! ! ! , then all correct 
! processes will find the same 
! value and decide (6)

 If     decides at (9), every 
process wrote    at (4) and every 
correct process terminates at (9)

Termination
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

pi

Wi[j] != ",⊥

pi

pi

!



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Lemma 4 Either all processes 
that decide do so at (6) or at (9)

Proof. Suppose    decides at (6)

!For some j, 

 No process can exit at (7) 
! because its    contained only 

 If a process decides, it does so 
! at (6)

 

Agreement
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

W [j] != ⊥,#

!W



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Lemma 4 Either all processes 
that decide do so at (6) or at (9)

Proof. Suppose    decides at (9)

!   did exit the loop at (7)

!Every process evaluated    to 
! false and wrote   to    in (4)  

 No process can decide at (6)
 

Agreement
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

! W

pi

P



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Lemma 5 No two processes decide 
differently (Agreement)

Proof. Consider   ,    that decide

!By Lemma 4, they decide on 
! the same line–let it be (6)  

! !                              
! and

!Both         and         hold (1)

!   and     come from snapshots.  
! Hence                        (2)

!From (1), (2), and         :          
!                  and 

 

Agreement
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi pj

∃V!, Vk : S(V!) = w! "= ⊥,$

S(Vk) = wk != ⊥,#

P (V!) P (Vk)

VkV!

V! ≤ Vk ∨ Vk ≤ V!

AP→S

S(V!) = S(Vk) w! = wk



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Lemma 5 No two processes decide 
differently (Agreement)

Proof. Consider   ,    that decide

!By Lemma 4, they decide on 
! the same line–let it be (9)  

!Each    has executed (4):  

!Each    has executed (1):

 Hence                        

!Since both processors apply 
! the same deterministic   , 
! agreement follows

 

Agreement
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi pj

p! W [!] != ⊥

p! V [!] = v!

Yi = Yj = (v1, . . . , vn)

F



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Lemma 6 A decided value is a 
proposed value (Validity)

Proof. Suppose    at (6) decides 
!    

!Then, by (3),         holds and, 
! from        ,                  a 
! non-   value of 

 

Validity
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

Wi[j] = wj != ⊥,#

P (Vj)

VP→S wj = S(Vj) =
⊥ J



(1)  

(2) repeat                       until               

(3) if         then                else

(4)  

(5) repeat                   do 

(6)          if                      then return

(7) until 

(8)                  do 

(9) return

Lemma 6 A decided value is a 
proposed value (Validity)

Proof. Suppose    decides at (9)   

!Then, by (7),   

!All    have written    into 

!Hence, 

!Since    outputs a value of   , 
! Validity follows

Validity
write(vi, V [i])

Vi ← snapshot(V ) |Vi| ≥ n−f

P (Vi) wi ← S(Vi) wi ← "

write(wi,W [i])

∀j ∈ [1, . . . , n] Wi[j] ← read(W [j])

∃j : Wi[j] "= ⊥,$ (Wi[j])

(⊥ "∈ Wi)

∀j ∈ [1, . . . , n] Yi[j] ← read(V [j])

(F (Yi))

iii) VP→S : ∀J ∈ V
n
f : P (J) ⇒ S(J) = a non-⊥ value of J

i) TC→P : I ∈ C ⇒ ∀J ∈ If : P (J)

ii) AP→S : ∀J1, J2 ∈ Vn
f :

(J1 ≤ J2) ∧ P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

pi

∀j : Wi[j] "= ⊥

pj vj V [j]

Yi = [v1, . . . , vn]

F Yi



It gets really cool...

Theorem 1 If   is  -acceptable, then there 
exists an  -fault tolerant protocol solving 
consensus for 

f

f

C

C



It gets really cool...

Theorem 1 If   is  -acceptable, then there 
exists an  -fault tolerant protocol solving 
consensus for 

Theorem 2 If there exists an  -fault tolerant 
protocol solving consensus for   , then   is  !  
! -acceptable

f

f

C

C

f

f
C C



So, how do these 
conditions look like?

C1 : (I ∈ C1) iff #1st(I) − #2nd(I) > f

P1(J) ≡ #1st(J) − #2nd(J)) > f − #⊥(J)

S1(J) = a : #a(J) = #1st(J)

C2 : (I ∈ C2) iff #max(I)(I) > f

P2(J) ≡ #max(J)(J) > f − #⊥(J)

S2(J) = max(J)



The Triumph 
of Randomization



The Big Picture

Does randomization make for more powerful 
algorithms?

Does randomization expand the class of problems solvable 
in polynomial time?
Does randomization help compute problems fast in parallel 
in the PRAM model? 



The Big Picture

Does randomization make for more powerful 
algorithms?

Does randomization expand the class of problems solvable 
in polynomial time?
Does randomization help compute problems fast in parallel 
in the PRAM model? 

You tell me!



The Triumph of 
Randomization?

Well, at least for distributed computations!

no deterministic 1-crash-resilient solution to 
Consensus

  -resilient randomized solution to consensus       
(        ) for crash failures

randomized solution for Consensus exists even 
for Byzantine failures!

f

f <n/2



A simple randomized 
algorithm

M. Ben Or.  “Another advantage of free choice: completely 
asynchronous agreement protocols” (PODC 1983, pp. 27-30)

exponential number of operations per process
BUT more practical protocols exist 

down to             expected operations/process
       resilient

O(n log2n)

n−1



The protocol’s structure
An infinite repetition of asynchronous rounds

in round  ,   only handles messages with 
timestamp 
each round has two phases
in the first, each   broadcasts an a-value 
which is a function of the b-values collected 
in the previous round (the first a-value is 
the input bit)
in the second, each   broadcasts a b-value 
which is a function of the collected a-values 
decide stutters

r

pr

p

p



Ben Or’s Algorithm
 1:    := input bit;   := 1;

 2: repeat forever
 3: !{phase 1}
 4: !send        to all
 5: !Let   be the multiset of the first       a-values with timestamp   received
 6: !if                                   then    := 
 7:!else    := 
 8:!{phase 2}
 9:!send        to all
10:!Let   be the multiset of the first        b-values with timestamp   received
11:!if                                   then decide(v);     := 
12:!else if                     then    := 
13:!else    :=     {   is chosen uniformly at random to be 0 or 1}
14:!   := 

ap r

(ap, r)

r

bp v

A

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

⊥bp

(bp, r)

n−f

n−f rB

(∃v ∈ {0, 1} : ∀b ∈ B : b = v) ap v

(∃b ∈ B : b #= ⊥) ap

ap

r+1r

b

$ $



Validity
 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



Validity
All identical inputs ( )
Each process set a-value :=   
and broadcasts it to all
Since at most   faulty, every 
correct process receives at 
least       identical a-values in 
round 1
Every correct process sets              
b-value :=   and broadcasts it to 
all
Again, every correct process 
receives at least       identical    
b-values in round 1 and decides 

n−f

n−f

f

i

i

i

i

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



A useful observation

Lemma   For all  , either       .                 
! ! ! ! for all   or    .                 
! ! ! ! for all   
bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



A useful observation

Lemma   For all  , either       .                 
! ! ! ! for all   or    .                 
! ! ! ! for all   

Proof      By contradiction.
Suppose   and   at round   such that         
! = 0 and      = 1
From lines 6,7   received        distinct 
0s,    received         distinct 1s.
Then,              , implying          
Contradiction

Corollary  It is impossible that 
two processes   and   decide 
on different values at round  

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

p q

r

2(n−f)≤n

n−f

n−f

p

p

q

bp,r bq,r

n≤2f

q r

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



Agreement
Let   be the first round in which a 
decision is made 
Let   be a process that decides in 

r

p r

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



Agreement
Let   be the first round in which a 
decision is made 
Let   be a process that decides in 
By the Corollary, no other process 
can decide on a different value in 
To decide,   must have received       
“ ” from distinct processes
every other correct process has 
received “ ” from at least
By lines 11 and 12, every correct 
process sets its new a-value to for 
round      to “ ”
By the same argument used to prove 
Validity, every correct process that 
has not decided “ ” in round   will do 
so by the end of round 

r

p r

r

p n−f

n−2f ≥ 1

r+1

r+1

r

i

i

i

i

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



Termination I
Remember that by Validity, if all 
(correct) processes propose the 
same value “ ” in phase 1 of 
round . , then every correct 
process decides “ ” in round  .
The probability of all processes 
proposing the same input value (a 
landslide) in round 1 is

Pr[landslide in round 1] =    .
What can we say about the 
following rounds?

1/2
n

r

i

i

r

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then    := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r



Termination II
In round r > 1, the a-values are not 
necessarily chosen at random!
By line 12, some process may set its a-value 
to a non-random value v
By the Lemma, however, all non-random 
values are identical!
Therefore, in every r there is a positive 
probability (at least      ) for a landslide
Hence, for any round r

Pr[no lanslide at round r]                       .
Since coin flips are independent:
Pr[no lanslide for first k rounds]              .
When       , this value is about 1/e; then, if

Pr[landslide within k rounds] ≥ 

which converges quickly to 1 as c grows

k = 2
n

k = c2
n

1/2
n

≤ (1 − 1/2n)k

≤ 1 − 1/2
n

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
11:!if                                  then decide( );     :=
12:!else if                    then     := 
13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

1 − (1 − 1/2n)k
≈ 1 − 1/ec


