Global Predicate Detection and Event Ordering

Our Problem

To compute predicates over the state of a distributed application

Model

- Message passing
- No failures
- Two possible timing assumptions:
 - 1. Synchronous System
 - 2. Asynchronous System
 - □ No upper bound on message delivery time
 - □ No bound on relative process speeds
 - □ No centralized clock

Asynchronous systems

- Weakest possible assumptions
 - o cfr. "finite progress axiom"
- Weak assumptions \equiv less vulnerabilities
- "Interesting" model w.r.t. failures (ah ah ah!)

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response

 \bigcirc

S

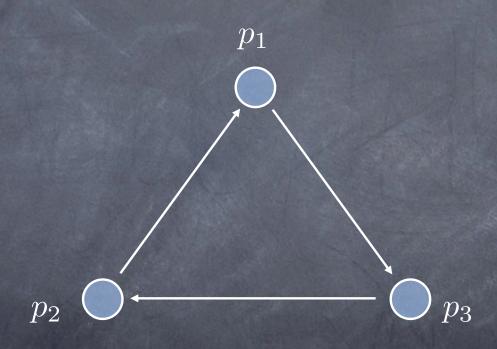
Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response

The server computes the response (possibly asking other servers) and returns it to the client

Deadlock!



Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds

Wait-For Graphs

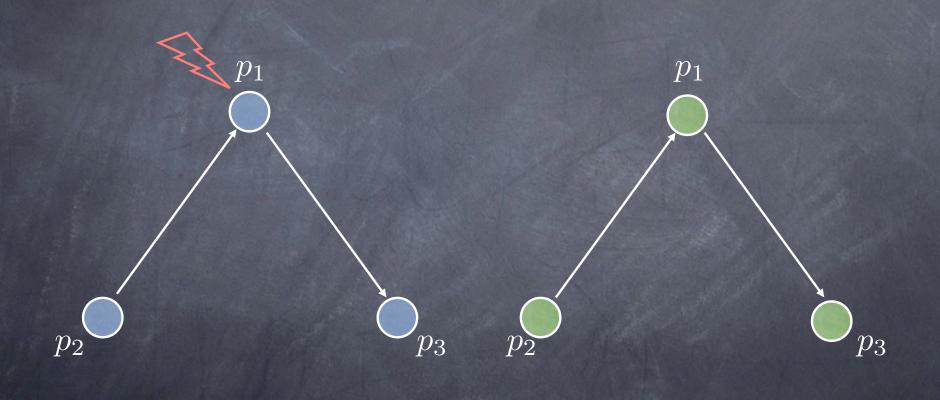
Wait-For Graphs

- \circ Cycle in WFG \Rightarrow deadlock
- lacksquare Deadlock $\Rightarrow \Diamond$ cycle in WFG

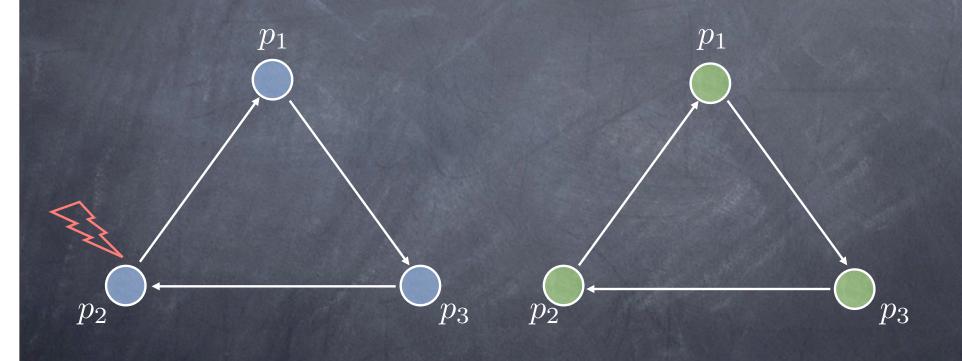
The protocol

- \odot On receipt of p_0 's message, p_i replies with its state and wait-for info

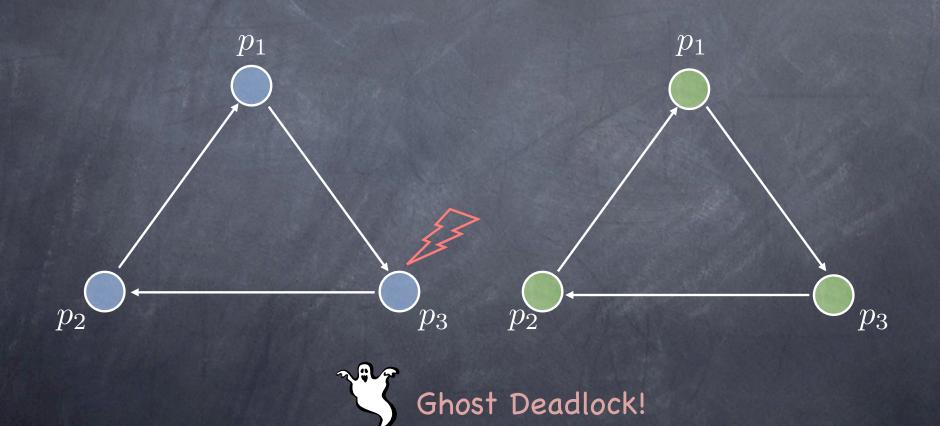
An execution



An execution



An execution



Houston, we have a problem...

- Asynchronous system
 - □ no centralized clock, etc. etc.
- Synchrony useful to
 - □ coordinate actions
 - order events
- Mmmmhhh...

Events and Histories

- Processes execute sequences of events
- Events can be of 3 types: local, send, and receive
- $lackbox{0}{\circ} e^i_p$ is the i-th event of process p
- $\ensuremath{\mathfrak{G}}$ The local history h_p of process p is the sequence of events executed by process p
 - \bullet h_n^k : prefix that contains first k events
- lacktriangledown The history H is the set $h_{p_0} \cup h_{p_1} \cup \dots h_{p_{n-1}}$

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

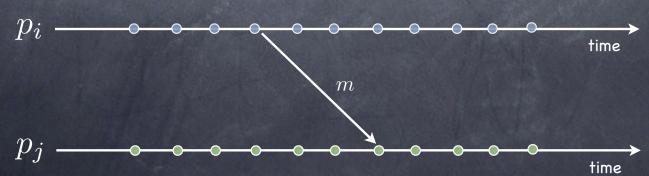
Ordering events

- Observation 1:
 - Events in a local history are totally ordered

Ordering events

- Observation 1:
 - Events in a local history are totally ordered

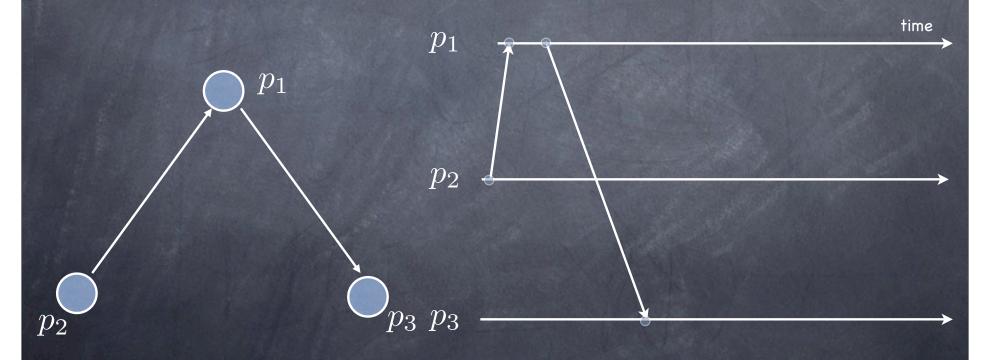
- Observation 2:

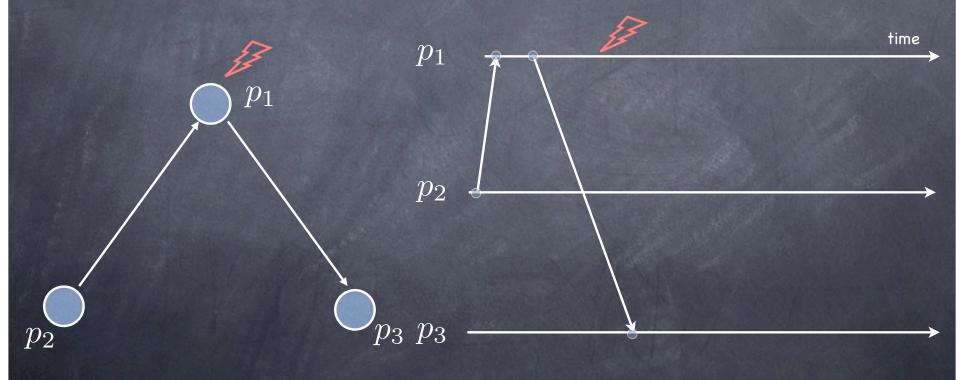


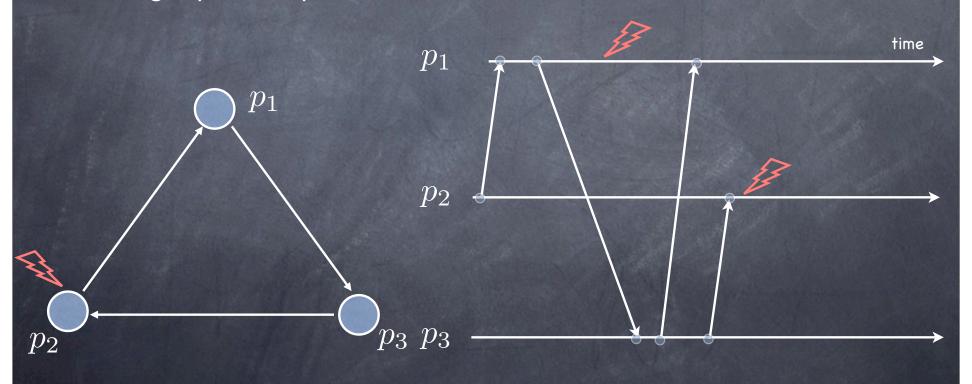
Happened-before (Lamport[1978])

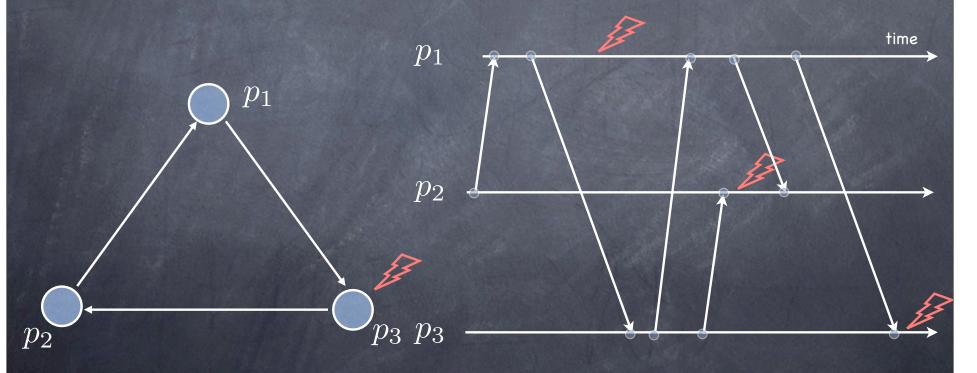
A binary relation \rightarrow defined over events

- 1. if $e_i^k, e_i^l \in h_i$ and k < l, then $e_i^k \rightarrow e_i^l$
- 2. if $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$
- 3. if $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$

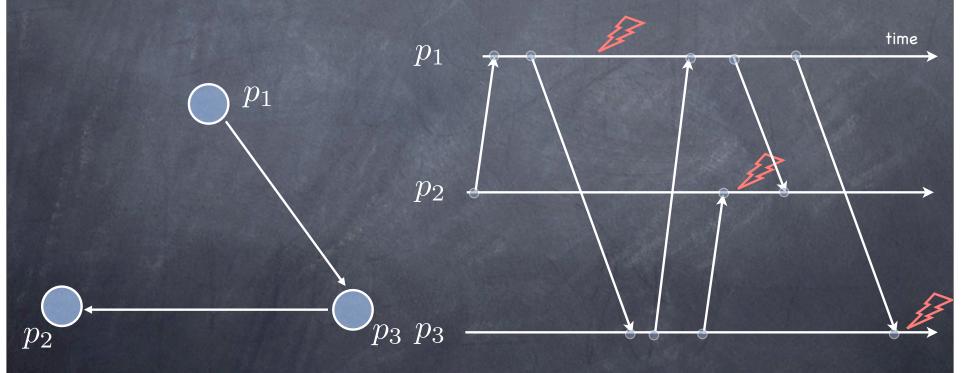




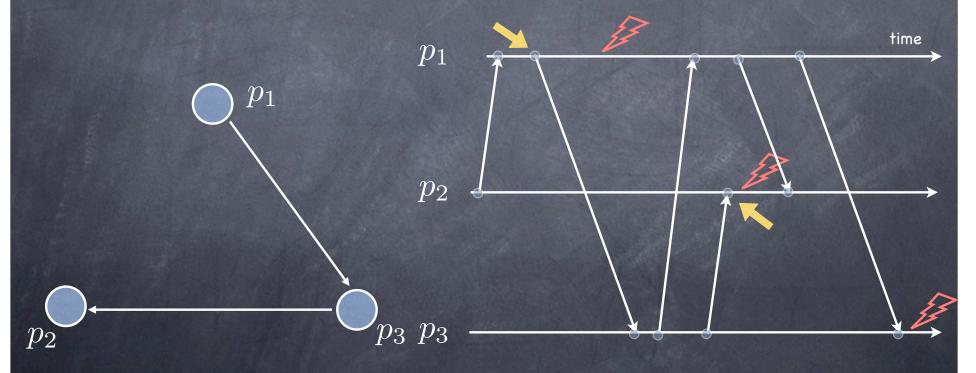




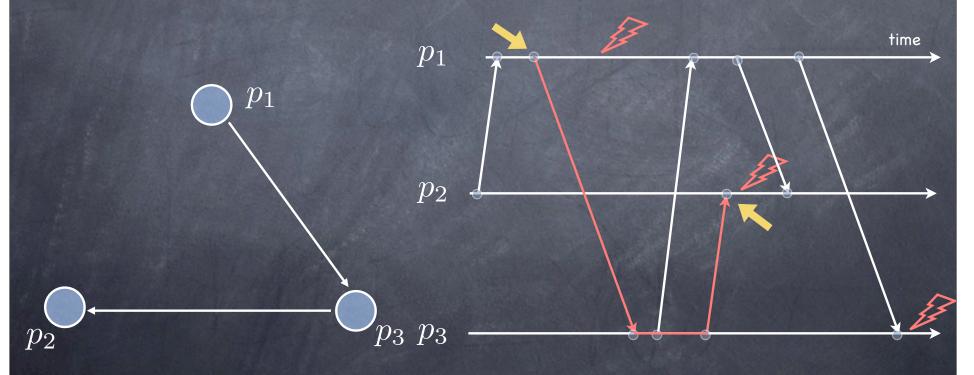
A graphic representation of a distributed execution



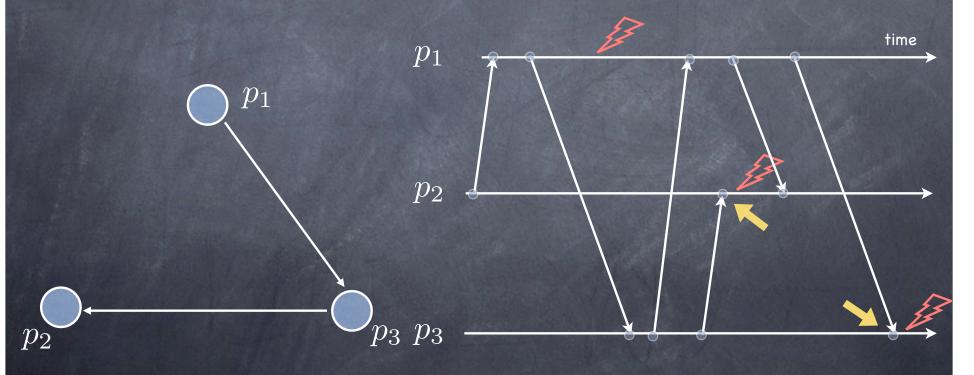
A graphic representation of a distributed execution



A graphic representation of a distributed execution



A graphic representation of a distributed execution



Runs and Consistent Runs

A run is a total ordering of the events in H that is consistent with the local histories of the processors

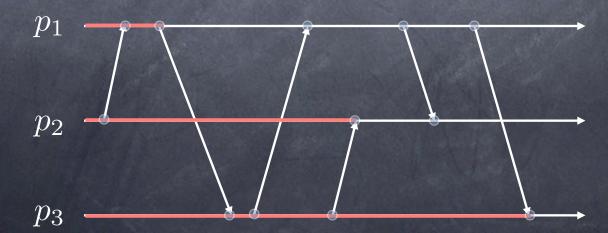
 \square Ex: h_1, h_2, \ldots, h_n is a run

- $\ensuremath{\mathfrak{O}}$ A run is consistent if the total order imposed in the run is an extension of the partial order induced by \rightarrow
- A single distributed computation may correspond to several consistent runs!

Cuts

A cut C is a subset of the global history of H

$$C = h_1^{c_1} \cup h_2^{c_2} \cup \dots h_n^{c_n}$$



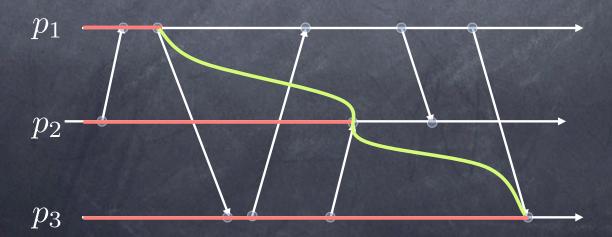
Cuts

A cut C is a subset of the global history of H

$$C = h_1^{c_1} \cup h_2^{c_2} \cup \dots h_n^{c_n}$$

The frontier of C is the set of events

$$e_1^{c_1}, e_2^{c_2}, \dots e_n^{c_n}$$



Global states and cuts

The global state of a distributed computation is an n-tuple of local states

$$\Sigma = (\sigma_1, \dots \sigma_n)$$

To each cut $(c_1 \dots c_n)$ corresponds a global state $(\sigma_1^{c_1}, \dots \sigma_n^{c_n})$

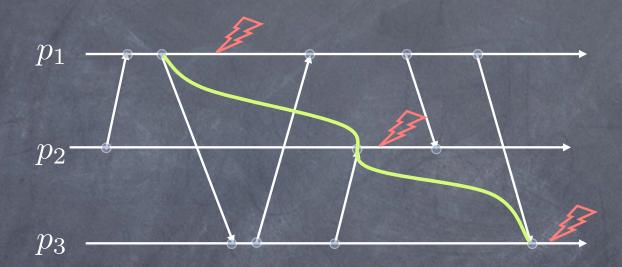
Consistent cuts and consistent global states

A cut is consistent if

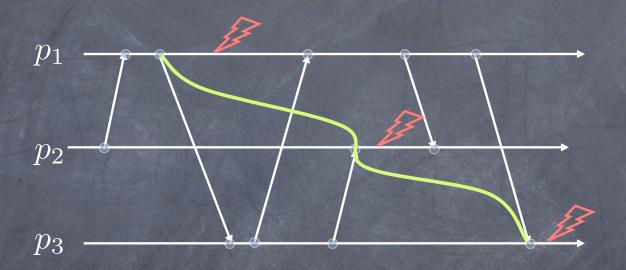
$$\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$$

A consistent global state is one corresponding to a consistent cut

What p_0 sees



What p_0 sees



Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event

Our task

- Develop a protocol by which a processor can build a consistent global state
- Informally, we want to be able to take a snapshot of the computation
- Not obvious in an asynchronous system...

Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- @ Record:
 - > processor states
 - > channel states
- Assumptions:
 - > FIFO channels
 - > Each m timestamped with with T(send(m))

Snapshot I

- i. p_0 selects t_{ss}
- ii. p_0 sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then p
 - a. records its local state σ_i
 - b. starts recording messages received on each of incoming channels
 - c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Snapshot I

- i. p_0 selects t_{ss}
- ii. p_0 sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then \overline{p}
 - a. records its local state σ_i
 - b. sends an empty message along its outgoing channels
 - c. starts recording messages received on each of incoming channels
 - d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Theorem Snapshot I produces a consistent cut

Proof Need to prove $e_i \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

< Definition >

0.
$$e_j \in C \equiv T(e_j) < t_{ss}$$
 3. $T(e_j) < t_{ss}$

< Assumption >

1.
$$e_j \in C$$

< Assumption >

$$2. e_i \rightarrow e_j$$

< 0 and 1>

3.
$$T(e_j) < t_{ss}$$

< Property of real time> < Definition >

4.
$$e_i \to e_j \Rightarrow T(e_i) < T(e_j)$$
 7. $e_i \in C$

< 2 and 4>

5.
$$T(e_i) < T(e_j)$$

< 5 and 3>

6.
$$T(e_i) < t_{ss}$$

7.
$$e_i \in C$$

Clock Condition

< Property of real time>

4.
$$e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$$

Can the Clock Condition be implemented some other way?

Lamport Clocks

Each process maintains a local variable LC $LC(e) \equiv \mbox{value of } LC \mbox{ for event } e$

$$p \xrightarrow{e_p^i} e_p^{i+1}$$

$$p \xrightarrow{e_p^i}$$

$$LC(e_p^i) < LC(e_p^{i+1})$$

$$LC(e_p^i) < LC(e_p^j)$$

$$LC(e_p^i) < LC(e_p^j)$$

Increment Rules

$$p \xrightarrow{e_p^i} e_p^{i+1}$$

$$LC(e_p^{i+1}) = LC(e_p^i) + 1$$

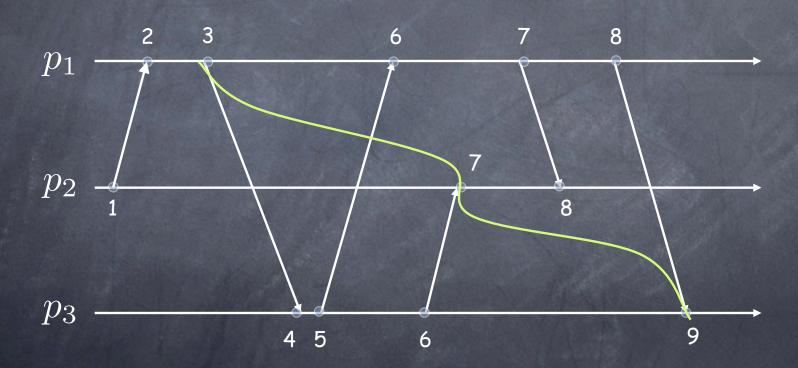
$$p \xrightarrow{e_p^i}$$

$$q \xrightarrow{e_q^j}$$

$$LC(e_q^j) = max(LC(e_q^{j-1}), LC(e_p^i)) + 1$$

Timestamp
$$m$$
 with $TS(m) = LC(send(m))$

Space-Time Diagrams and Logical Clocks



A subtle problem

```
when LC=t\ \mbox{do}\ \mbox{S} doesn't make sense for Lamport clocks!
```

- $\ensuremath{\mathfrak{G}}$ there is no guarantee that LC will ever be t
- \odot S is anyway executed <u>after</u> LC=t

Fixes:

- - \square execute e and then S
- $\text{ if } e = receive(m) \wedge (TS(m) \geq t) \wedge (LC \leq t-1)$
 - □ put message back in channel
 - \square re-enable e ; set LC = t 1; execute S

An obvious problem

- No $t_{ss}!$
- $\ensuremath{\mathfrak{O}}$ Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

An obvious problem

- No $t_{ss}!$
- $\ensuremath{\mathfrak{O}}$ Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

An obvious problem

- No $t_{ss}!$
- $\ensuremath{\mathfrak{O}}$ Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

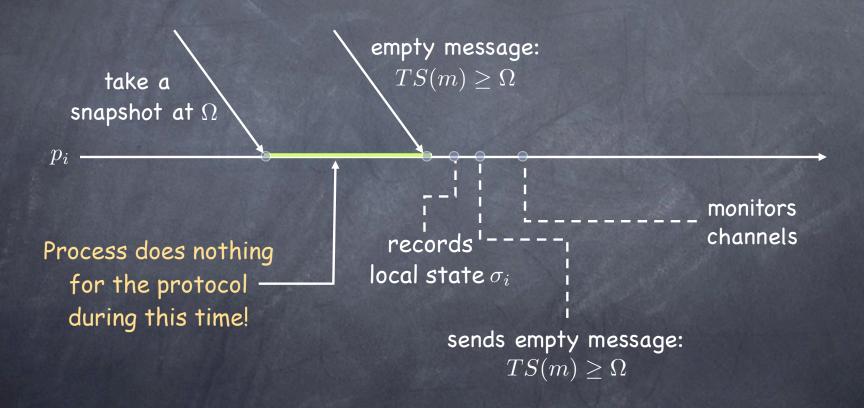
- Doing so assumes
 - upper bound on message delivery time
 - upper bound relative process speeds

We better relax it...

Snapshot II

- p_0 sends "take a snapshot at Ω'' to all processes; it waits for all of them to reply and then sets its logical clock to Ω
- - \square records its local state σ_i
 - □ sends an empty message along its outgoing channels
 - □ starts recording messages received on each incoming channel
 - \square stops recording a channel when receives first message with timestamp greater than or equal to Ω

Relaxing synchrony



Use empty message to announce snapshot!

Snapshot III

- \odot processor p_0 sends itself "take a snapshot"
- **10** when p_i receives "take a snapshot" for the first time from p_j :
 - \square records its local state σ_i
 - □ sends "take a snapshot" along its outgoing channels
 - \square sets channel from p_j to empty
 - starts recording messages received over each of its other incoming channels
- - \square stops recording channel from p_k
- when p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.

Snapshots: a perspective

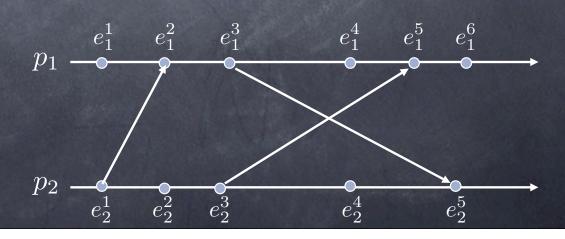
 $\ensuremath{\mathfrak{O}}$ The global state Σ^s saved by the snapshot protocol is a consistent global state

Snapshots: a perspective

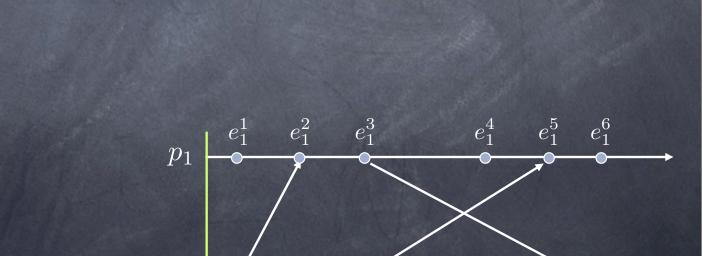
- $\ensuremath{\mathfrak{O}}$ The global state Σ^s saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
 - □ a distributed computation provides only a partial order of events
 - □ many total orders (runs) are compatible with that partial order
 - \square all we know is that Σ^s could have occurred

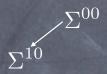
Snapshots: a perspective

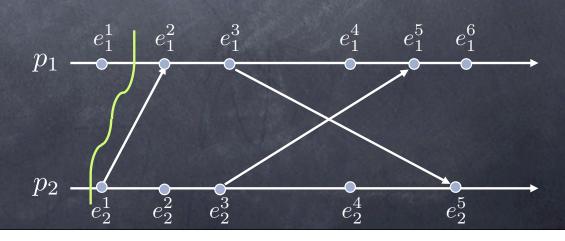
- $\ensuremath{\mathfrak{O}}$ The global state Σ^s saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
 - □ a distributed computation provides only a partial order of events
 - □ many total orders (runs) are compatible with that partial order
 - \square all we know is that Σ^s could have occurred
- We are evaluating predicates on states that may have never occurred!

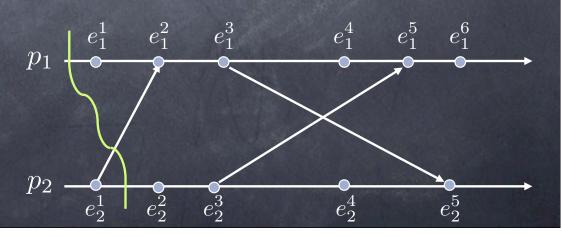


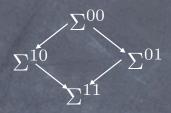
 Σ^{00}

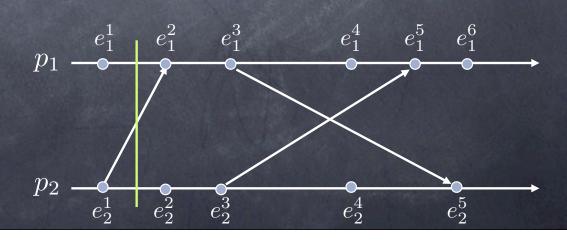


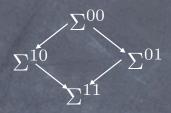


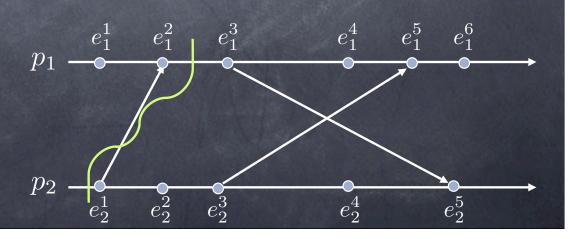


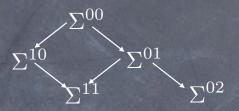


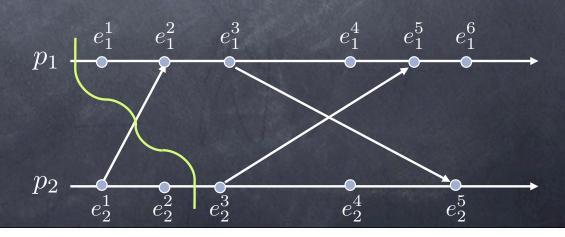


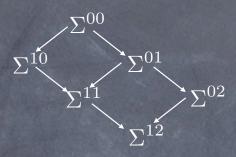


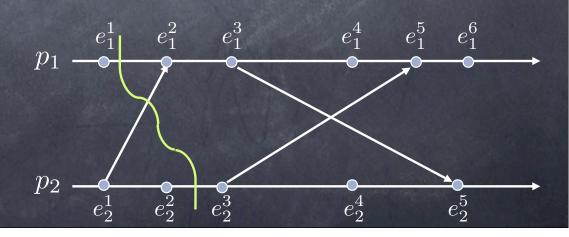


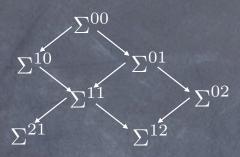


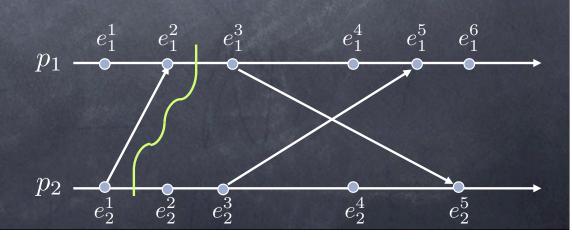


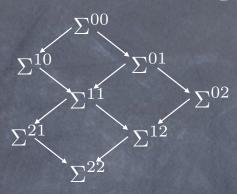


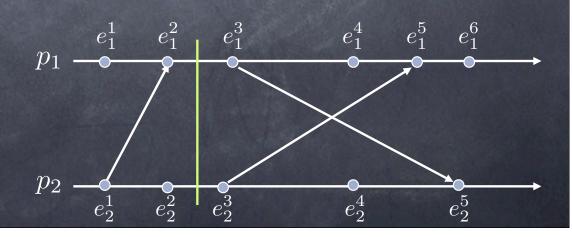




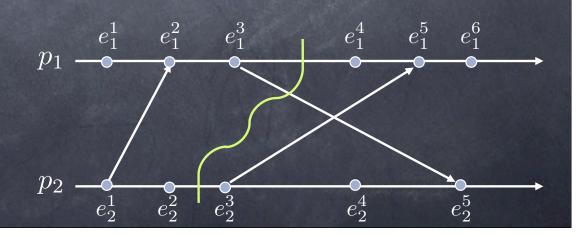


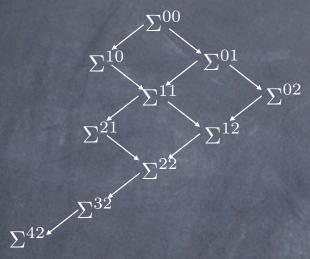


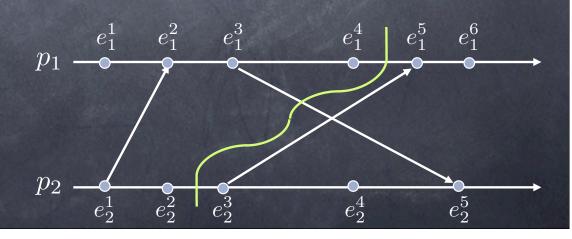


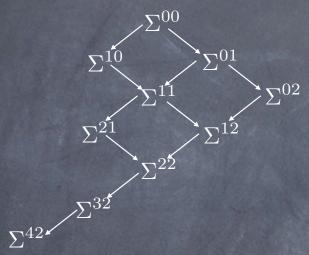


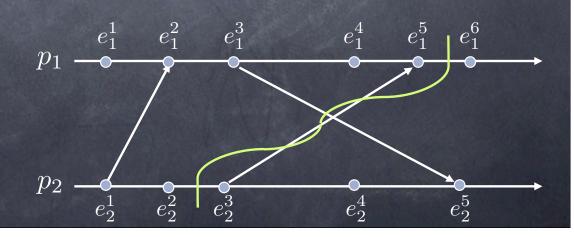


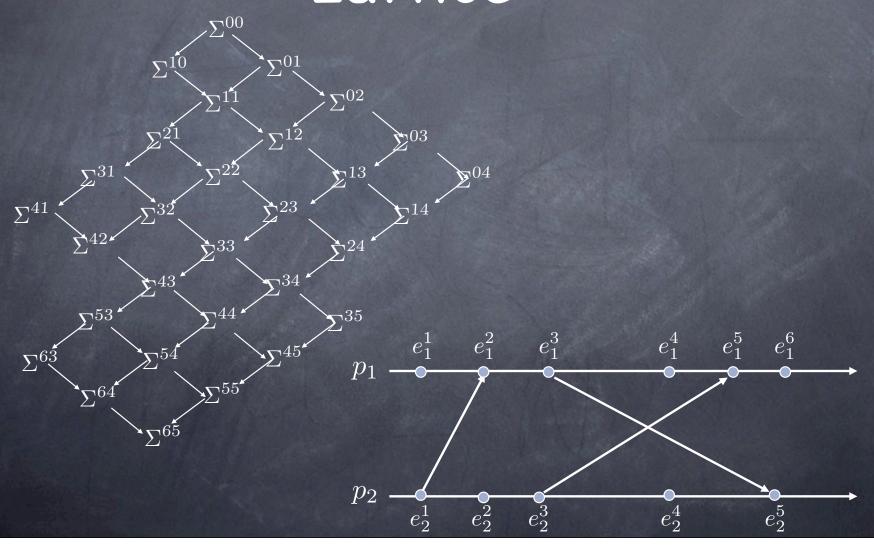


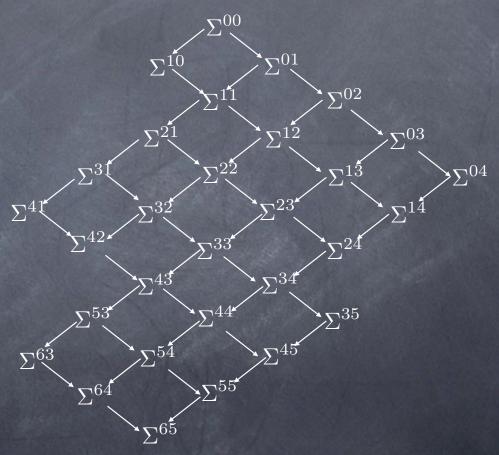


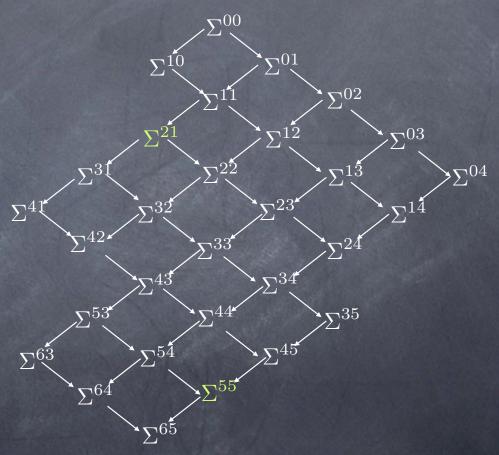


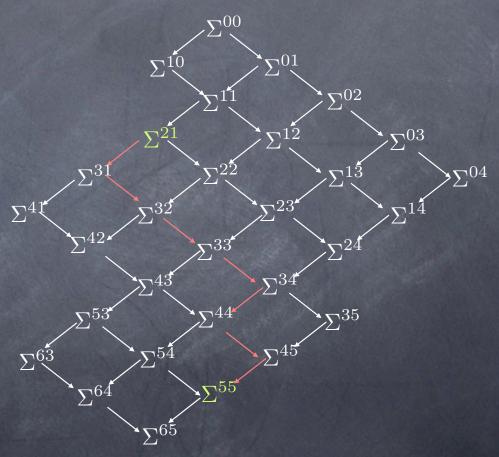




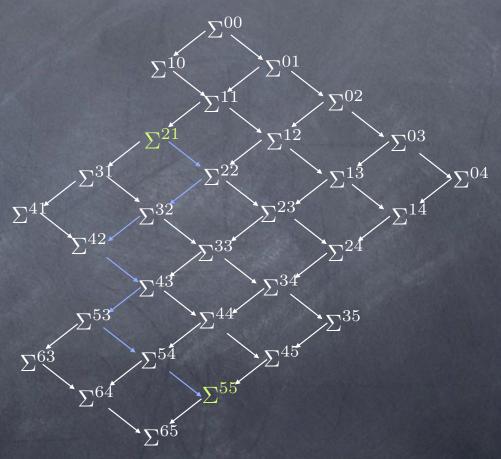








$$\Sigma^{ij} \leadsto \Sigma^{kl}$$



So, why do we care about Σ^s again?

Deadlock is a stable property

 $\mathsf{Deadlock} \Rightarrow \square \ \mathsf{Deadlock}$

o If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$

So, why do we care about Σ^s again?

- Deadlock is a stable property
 - $\mathsf{Deadlock} \Rightarrow \Box \mathsf{Deadlock}$
- o If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$
- $\ensuremath{\mathfrak{G}}$ Deadlock in Σ^s implies deadlock in Σ^f

So, why do we care about Σ^s again?

- Deadlock is a stable property
 - $\mathsf{Deadlock} \Rightarrow \square \mathsf{Deadlock}$
- o If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$
- $\ensuremath{\mathfrak{G}}$ Deadlock in Σ^s implies deadlock in Σ^f
- ${\it \odot}$ No deadlock in Σ^s implies no deadlock in Σ^i

Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.