Same problem, different approach

(2 Monitor process does not query explicitly
(2) Instead, it passively collects information and uses it to build an observation.
(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

Observations:

a few observations

(2) An observation puts no constraint on the order in which the monitor receives notifications

Observations:

a few observations

(2) An observation puts no constraint on the order in which the monitor receives notifications

Observations:

a few observations

(2) An observation puts no constraint on the order in which the monitor receives notifications

Observations:

a few observations

(2) An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order

Observations:

a few observations

(2) An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order
What about consistent runs?

Causal delivery

FIFO delivery guarantees:

$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

Causal delivery

FIFO delivery guarantees:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$
Causal delivery generalizes FIFO:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{k}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

Causal delivery

FIFO delivery guarantees:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$
Causal delivery generalizes FIFO:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{k}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

$p_{3} \longrightarrow$

Causal delivery

FIFO delivery guarantees:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$
Causal delivery generalizes FIFO:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{k}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

$p_{3} \longrightarrow$

Causal delivery

FIFO delivery guarantees:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$
Causal delivery generalizes FIFO:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{k}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

Causal delivery

FIFO delivery guarantees:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$
Causal delivery generalizes FIFO:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{k}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

Causal delivery

FIFO delivery guarantees:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{i}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$
Causal delivery generalizes FIFO:
$\operatorname{send}_{i}(m) \rightarrow \operatorname{send}_{k}\left(m^{\prime}\right) \Rightarrow \operatorname{deliver}_{j}(m) \rightarrow \operatorname{deliver}_{j}\left(m^{\prime}\right)$

Causal Delivery

in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery

in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_{0} delivers all messages it received with timestamp up to $t-\Delta$ in increasing timestamp order

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.
$p_{0} \xrightarrow{1}$

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.
$p_{0} \overbrace{0}^{1} \overbrace{}^{4}$ Should p_{0} deliver?

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.
$p_{0} \xrightarrow{1} \sim^{4}$ Should p_{0} deliver?

Problem: Lamport Clocks don't provide gap detection
Given two events e and e^{\prime} and their clock values $L C(e)$ and $L C\left(e^{\prime}\right)$-where $L C(e)<L C\left(e^{\prime}\right)$ determine whether some event $e^{\prime \prime}$ exists s.t.

$$
L C(e)<L C\left(e^{\prime \prime}\right)<L C\left(e^{\prime}\right)
$$

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if p will never receive a future message m^{\prime} s.t.

$$
T S\left(m^{\prime}\right)<T S(m)
$$

Implementing Stability

(2) Real-time clocks
\square wait for \triangle time units

Implementing Stability

(6) Real-time clocks
\square wait for \triangle time units
(2) Lamport clocks
\square wait on each channel for m s.t. $T S(m)>L C(e)$
(2) Design better clocks!

Clocks and STRONG Clocks

(2) Lamport clocks implement the clock condition:

$$
e \rightarrow e^{\prime} \Rightarrow L C(e)<L C\left(e^{\prime}\right)
$$

(2) We want new clocks that implement the strong clock condition:

$$
e \rightarrow e^{\prime} \equiv S C(e)<S C\left(e^{\prime}\right)
$$

Causal Histories

(2 The causal history of an event e in (H, \rightarrow) is the set $\theta(e)=\left\{e^{\prime} \in H \mid e^{\prime} \rightarrow e\right\} \cup\{e\}$

Causal Histories

(2 The causal history of an event e in (H, \rightarrow) is the set

$$
\theta(e)=\left\{e^{\prime} \in H \mid e^{\prime} \rightarrow e\right\} \cup\{e\}
$$

Causal Histories

6 The causal history of an event e in (H, \rightarrow) is the set

$$
\theta(e)=\left\{e^{\prime} \in H \mid e^{\prime} \rightarrow e\right\} \cup\{e\}
$$

$$
e \rightarrow e^{\prime} \equiv \theta(e) \subset \theta\left(e^{\prime}\right)
$$

How to build $\theta(e)$

Each process p_{i} :
\square initializes $\theta: \quad \theta:=\emptyset$
\square if e_{i}^{k} is an internal or send event, then

$$
\theta\left(e_{i}^{k}\right):=\left\{e_{i}^{k}\right\} \cup \theta\left(e_{i}^{k-1}\right)
$$

\square if e_{i}^{k} is a receive event for message m, then

$$
\theta\left(e_{i}^{k}\right):=\left\{e_{i}^{k}\right\} \cup \theta\left(e_{i}^{k-1}\right) \cup \theta(\operatorname{send}(m))
$$

Pruning causal histories

- Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
(2) Use a more clever way to encode $\theta(e)$

Vector Clocks

(2 Consider $\theta_{i}(e)$, the projection of $\theta(e)$ on p_{i}
(2) $\theta_{i}(e)$ is a prefix of $h^{i}: \theta_{i}(e)=h_{i}^{k_{i}}$ - it can be encoded using k_{i}
(2 $\theta(e)=\theta_{1}(e) \cup \theta_{2}(e) \cup \ldots \cup \theta_{n}(e)$ can be encoded using $k_{1}, k_{2}, \ldots, k_{n}$

Represent θ using an n-vector $V C$ such that

$$
V C(e)[i]=k \Leftrightarrow \theta_{i}(e)=h_{i}^{k_{i}}
$$

Update rules

Example

Operational interpretation

$V C\left(e_{i}\right)[i]=$
$V C\left(e_{i}\right)[j]=$

Operational interpretation

$V C\left(e_{i}\right)[i]=$ no. of events executed by p_{i} up to and including e_{i}
$V C\left(e_{i}\right)[j]=$

Operational interpretation

$V C\left(e_{i}\right)[i]=$ no. of events executed by p_{i} up to and including e_{i}
$V C\left(e_{i}\right)[j]=$ no. of events executed by p_{j} that happen before e_{i} of p_{i}

VC properties: event ordering

Given two vectors V and V_{l}^{\prime} less than is defined as:

$$
V<V^{\prime} \equiv\left(V \neq V^{\prime}\right) \wedge\left(\forall k: 1 \leq k \leq n: V[k] \leq V^{\prime}[k]\right)
$$

(2) Strong Clock Condition: $e \rightarrow e^{\prime} \equiv V C(e) \leq V C\left(e^{\prime}\right)$
(2) Simple Strong Clock Condition:

Given e_{i} of p_{i} and e_{j} of p_{j}, where $i \neq j$

$$
e_{i} \rightarrow e_{j} \equiv V C\left(e_{i}\right)[i] \leq V C\left(e_{j}\right)[i]
$$

(2) Concurrency

Given e_{i} of p_{i} and e_{j} of p_{j}, where $i \neq j$ $e_{i} \| e_{j} \equiv\left(V C\left(e_{i}\right)[i]>V C\left(e_{j}\right)[i]\right) \wedge\left(V C\left(e_{j}\right)[j]>V C\left(e_{i}\right)[j]\right)$

VC properties: consistency

(2) Pairwise inconsistency

Events e_{i} of p_{i} and e_{j} of $p_{j}(i \neq j)$ are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if

$$
\left(V C\left(e_{i}\right)[i]<V C\left(e_{j}\right)[i]\right) \vee\left(V C\left(e_{j}\right)[j]<V C\left(e_{i}\right)[j]\right)
$$

- Consistent Cut

A cut defined by $\left(c_{1}, \ldots, c_{n}\right)$ is consistent if and only if

$$
\forall i, j: 1 \leq i \leq n, 1 \leq j \leq n:\left(V C\left(e_{i}^{c_{i}}\right)[i] \geq V C\left(e_{j}^{c_{j}}\right)[i]\right)
$$

VC properties: weak gap detection

(2) Weak gap detection

Given e_{i} of p_{i} and e_{j} of p_{j}, if $V C\left(e_{i}\right)[k]<V C\left(e_{j}\right)[k]$ for some $k \neq j$, then there exists e_{k} s.t

$$
\neg\left(e_{k} \rightarrow e_{i}\right) \wedge\left(e_{k} \rightarrow e_{j}\right)
$$

VC properties: weak gap detection

(2) Weak gap detection

Given e_{i} of p_{i} and e_{j} of p_{j}, if $V C\left(e_{i}\right)[k]<V C\left(e_{j}\right)[k]$ for some $k \neq j$, then there exists e_{k} s.t

$$
\neg\left(e_{k} \rightarrow e_{i}\right) \wedge\left(e_{k} \rightarrow e_{j}\right)
$$

VC properties: strong gap detection

(2) Weak gap detection

Given e_{i} of p_{i} and e_{j} of p_{j}, if $V C\left(e_{i}\right)[k]<V C\left(e_{j}\right)[k]$ for some $k \neq j$, then there exists e_{k} s.t

$$
\neg\left(e_{k} \rightarrow e_{i}\right) \wedge\left(e_{k} \rightarrow e_{j}\right)
$$

(2) Strong gap detection

Given e_{i} of p_{i} and e_{j} of p_{j}, if $V C\left(e_{i}\right)[i]<V C\left(e_{j}\right)[i]$ then there exists e_{i}^{\prime} s.t.

$$
\left(e_{i} \rightarrow e_{i}^{\prime}\right) \wedge\left(e_{i}^{\prime} \rightarrow e_{j}\right)
$$

VCs for Causal Delivery

(2) Each process increments the local component of its VC only for events that are notified to the monitor
(2) Each message notifying evente is timestamped with $V C(e)$
(6) The monitor keeps all notification messages in a set M

