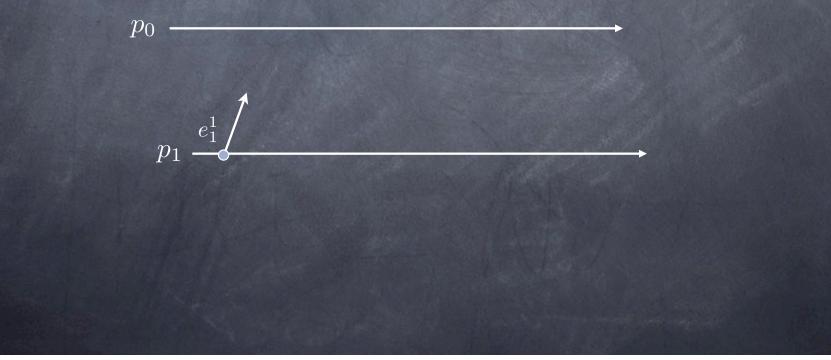
Same problem, different approach

Monitor process does not query explicitly

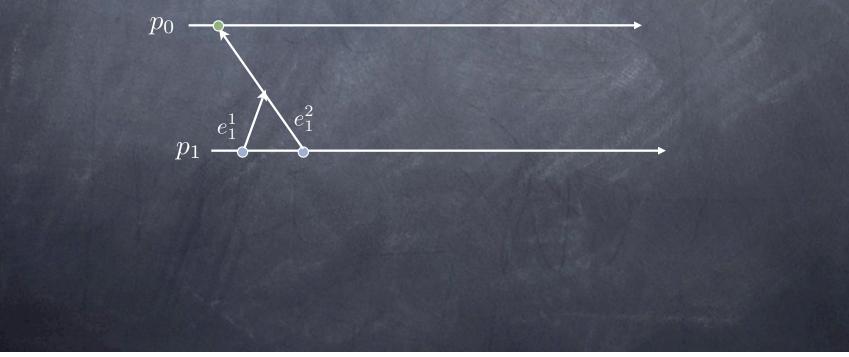
 Instead, it passively collects information and uses it to build an observation. (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

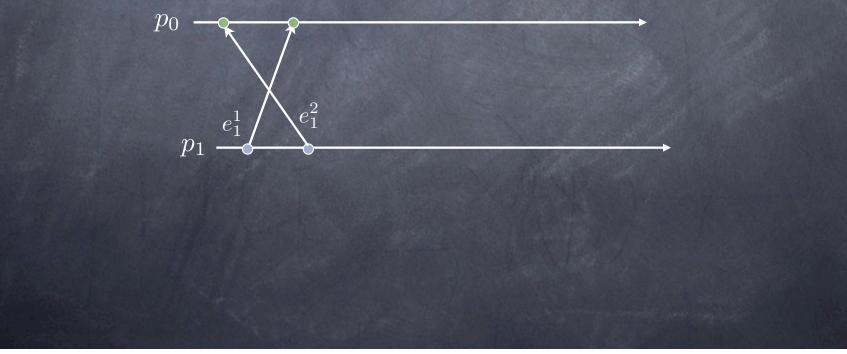
An observation puts no constraint on the order in which the monitor receives notifications



An observation puts no constraint on the order in which the monitor receives notifications



An observation puts no constraint on the order in which the monitor receives notifications



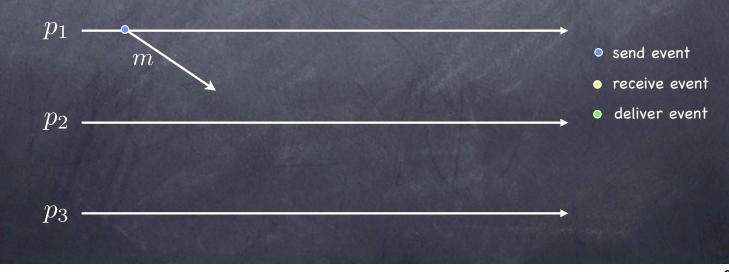
An observation puts no constraint on the order in which the monitor receives notifications

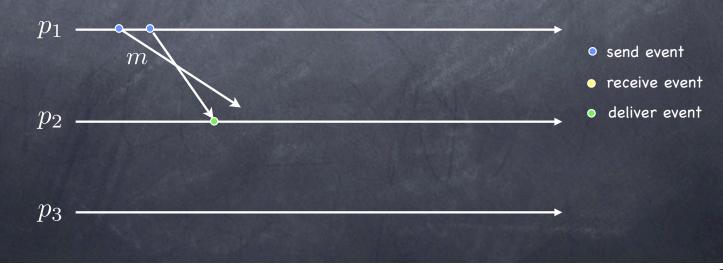
To obtain a run, messages must be delivered to the monitor in FIFO order

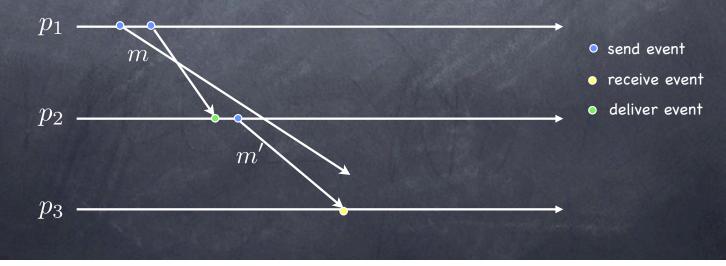
An observation puts no constraint on the order in which the monitor receives notifications

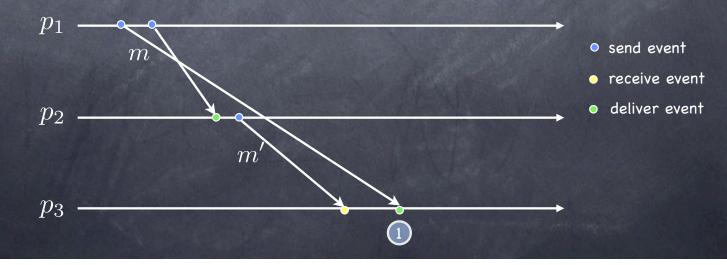
To obtain a run, messages must be delivered to the monitor in FIFO order What about consistent runs?

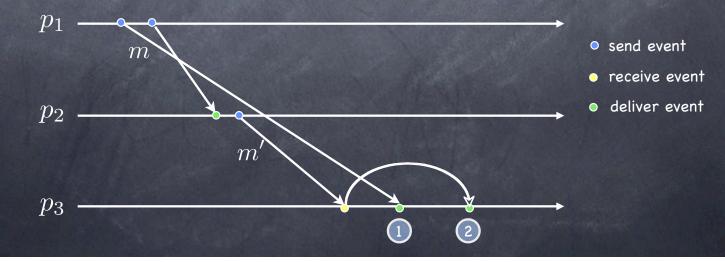
FIFO delivery guarantees: $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$











Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all messages it received with timestamp up to $t-\Delta$ in increasing timestamp order

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \longrightarrow \bullet \bullet \bullet \bullet \bullet$

Should p_0 deliver?

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \longrightarrow p_0$ p_0 deliver?

Problem: Lamport Clocks don't provide gap detection

Given two events e and e' and their clock values LC(e) and LC(e')—where LC(e) < LC(e')determine whether some event e'' exists s.t. LC(e) < LC(e'') < LC(e')

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if pwill never receive a future message m's.t. TS(m') < TS(m)

Implementing Stability

Real-time clocks \square wait for Δ time units

Implementing Stability

Real-time clocks \square wait for Δ time units

 Lamport clocks \Box wait on each channel for m s.t. TS(m) > LC(e)

Ø Design better clocks!

Clocks and STRONG Clocks

The Lamport clocks implement the clock condition: $e \rightarrow e' \Rightarrow LC(e) < LC(e')$

We want new clocks that implement the strong clock condition:

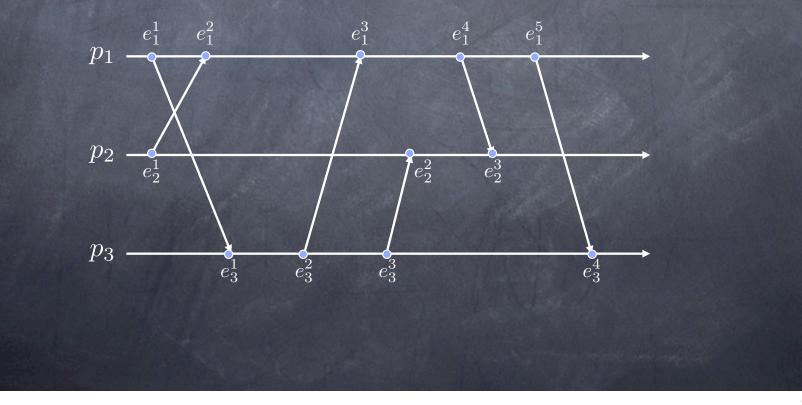
 $e \to e' \equiv SC(e) < SC(e')$

Causal Histories

The causal history of an event e in (H, \rightarrow) is the set $\theta(e) = \{e' \in H \mid e' \rightarrow e\} \cup \{e\}$

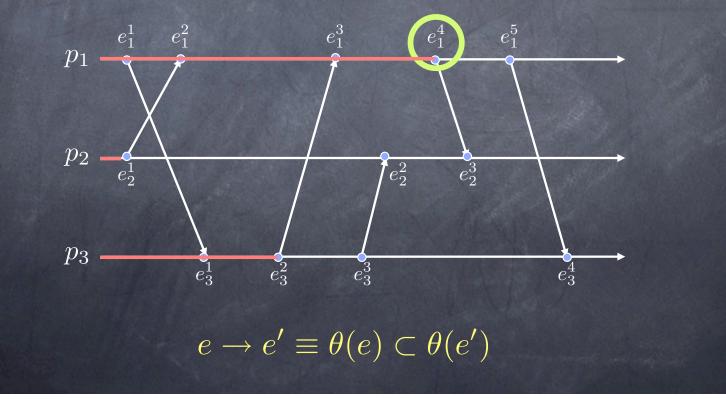
Causal Histories

The causal history of an event e in (H, \rightarrow) is the set $\theta(e) = \{e' \in H \mid e' \rightarrow e\} \cup \{e\}$



Causal Histories

The causal history of an event e in (H, \rightarrow) is the set $\theta(e) = \{e' \in H \mid e' \rightarrow e\} \cup \{e\}$



How to build $\theta(e)$

Each process p_i :

 \square initializes θ : θ := \emptyset

□ if e_i^k is an internal or send event, then $\theta(e_i^k) := \{e_i^k\} \cup \theta(e_i^{k-1})$ □ if e_i^k is a receive event for message m, then $\theta(e_i^k) := \{e_i^k\} \cup \theta(e_i^{k-1}) \cup \theta(send(m))$

Pruning causal histories

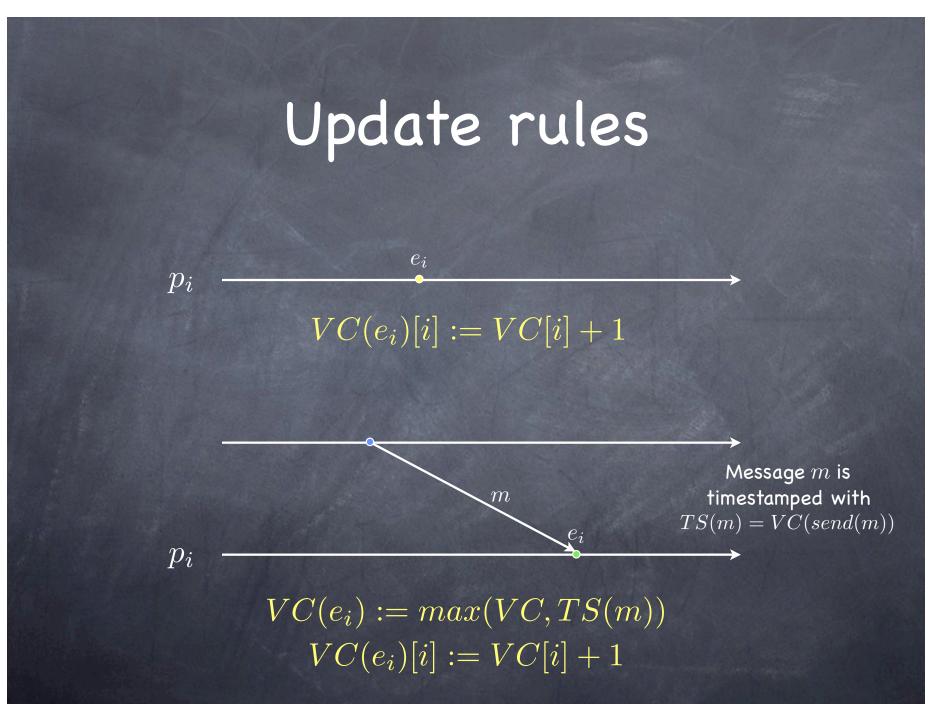
Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)

🐼 Use a more clever way to encode heta(e)

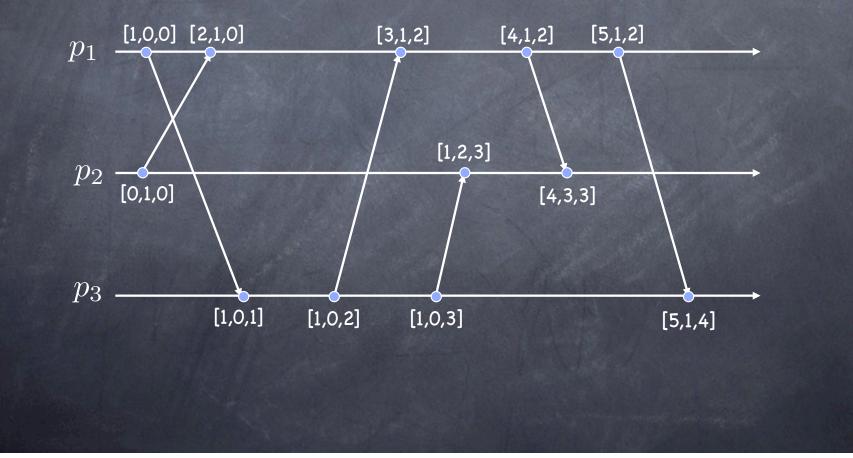
Vector Clocks

Consider θ_i(e), the projection of θ(e) on p_i
θ_i(e) is a prefix of hⁱ: θ_i(e) = h_i^{k_i} - it can be encoded using k_i

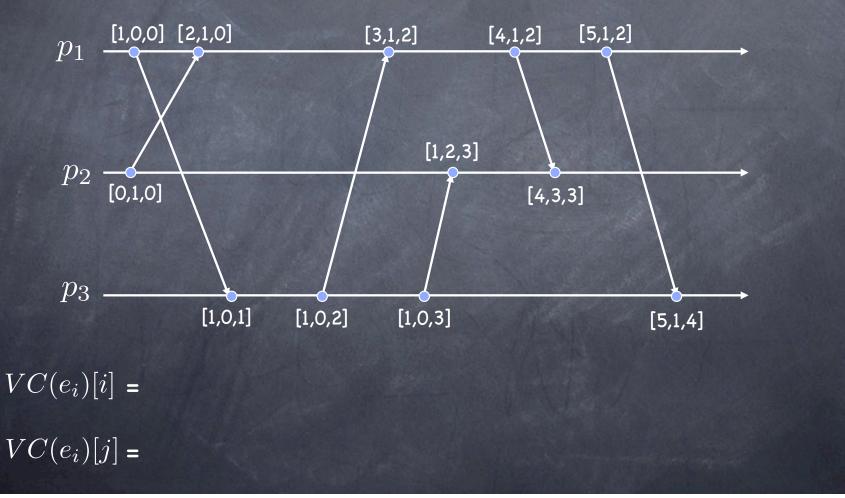
Represent θ using an *n*-vector VC such that $VC(e)[i] = k \Leftrightarrow \theta_i(e) = h_i^{k_i}$



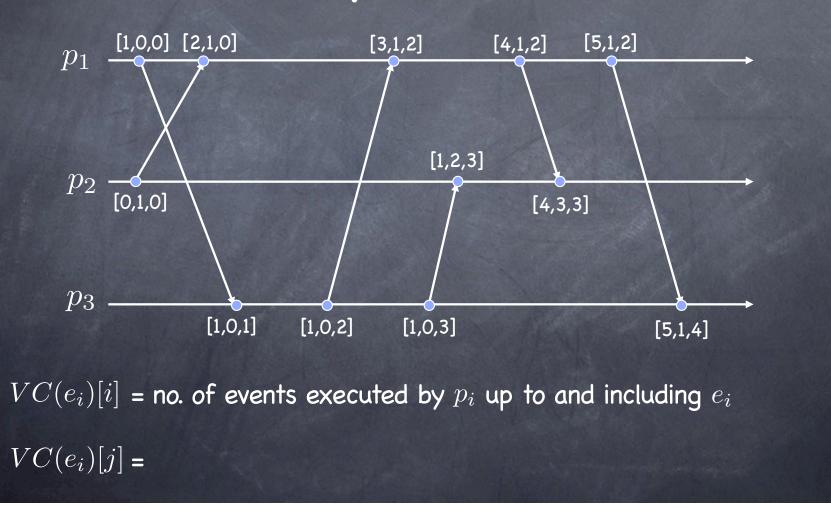
Example



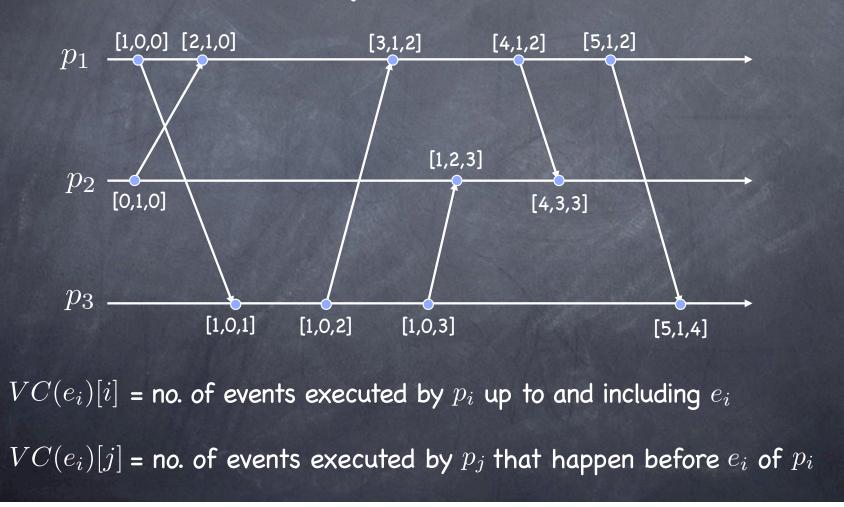
Operational interpretation



Operational interpretation



Operational interpretation



VC properties: event ordering

Given two vectors V and V' less than is defined as: $V < V' \equiv (V \neq V') \land (\forall k : 1 \le k \le n : V[k] \le V'[k])$

Strong Clock Condition: $e \rightarrow e' \equiv VC(e) \leq VC(e')$

Simple Strong Clock Condition: Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$

Oncurrency
 Given e_i of p_i and e_j of p_j , where i ≠ j $e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$

VC properties: consistency

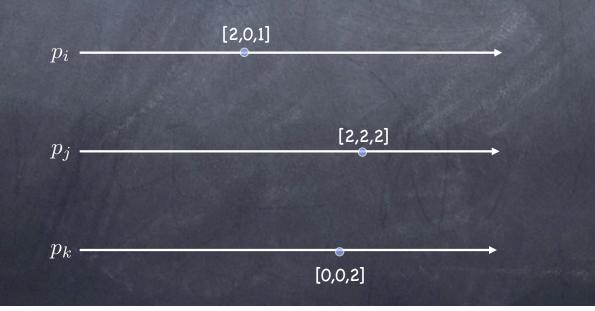
Ø Pairwise inconsistency

Events e_i of p_i and e_j of p_j $(i \neq j)$ are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if $(VC(e_i)[i] < VC(e_j)[i]) \lor (VC(e_j)[j] < VC(e_i)[j])$

Onsistent Cut
 A cut defined by (c₁,...,c_n) is consistent if and
 only if
 $\forall i, j: 1 ≤ i ≤ n, 1 ≤ j ≤ n: (VC(e_i^{c_i})[i] ≥ VC(e_j^{c_j})[i])$

VC properties: weak gap detection

So Weak gap detection Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t $\neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$

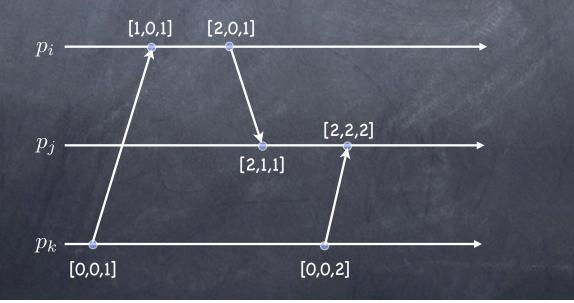


VC properties: weak gap detection

So Weak gap detection Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$

for some $k \neq j$, then there exists e_k s.t

 $\neg(e_k \to e_i) \land (e_k \to e_j)$



VC properties: strong gap detection

Weak gap detection

Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t $\neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$

Strong gap detection Given e_i of p_i and e_j of p_j , if $VC(e_i)[i] < VC(e_j)[i]$ then there exists e'_i s.t. $(e_i \rightarrow e'_i) \land (e'_i \rightarrow e_j)$

VCs for Causal Delivery

Each process increments the local component of its VC only for events that are notified to the monitor

Seach message notifying event e is timestamped with VC(e)

 $\ensuremath{\textcircled{\sc o}}$ The monitor keeps all notification messages in a set M