Hardware-Assisted
Transactions

Arvind Krishnamurthy
University of Washington



FaRM

Distributed transaction system that is in production at
Microsoft

Single datacenter solution
Hardware assisted:
¢ RDMA network

e Form of NVRAM to provide durable transactions

Other features:

e How to perform transactions in a “shared memory”
model?

e What is the appropriate form of OCC?



Network often a performance bottleneck

* Usual setup:

* Sockets -> Kernel TCP -> NIC driver -> NIC
* Expensive CPU operations

* System calls

* Message copies

* |nterrupts



RDMA provides kernel bypass

Machine A e App directly interacts with
207 NIC

* Shared memory mapping
RAM between App and NIC

® Can perform remote
Network reads/writes with no
interrupts or kernel copies

RAM * RPCs: sender writes tc?
remote memory, receiver
polls local queue &

Machine B Mbh executes RPCs




FaRM’s use of RDMA

* How to use RDMA for transactions and replication?

* Protocols we have seen require receiver CPU to
actively process messages

* RDMA used in three ways:

* One-sided read of objects during transaction
execution

e RPC composed of one-sided writes

* One-sided writes to backups from Primary



FaRM’s “NVRAM”

* FaRM writes go to RAM not disk
* But RAM loses content in power failure

e Could write to RAM of f+1 machines. But, cannot
handle correlated failures

* FaRM uses batteries in every rack to run for a few
minutes

* Power hardware notifies software when power fails
* Software halts all transaction processing
* Writes FaRM’s RAM to SSD in a few minutes

* On restart, reads saved memory image from SSD



FaRM Programming Model

* Distributed shared memory abstraction
* Fixed size objects, flat address space

* Transparent access to local and remote objects

Shared address space

o7

O3

O1 02 o9

06




RDMA choices

* RDMA supports two reliable modes:
e one-sided RDMA uses reliable transfers

e two-sided RDMA supports datagram transfers

* FaRM uses one-sided RDMA (“reliable transfer”)
e This results in an all-to-all connectivity pattern.

e Each side “authorizes” the other side of a connection to

do read or write operations in a designed region of
memory.



Use of one-sided RDMA

e But with very large numbers of long-lived RDMA pairs
of this kind, the RDMA hardware can run into
problems:

e NIC caches data associated with the mapped memory
regions. Cache can become over-full and performance then
degrades.

e NIC also caches the page mapping data. With large amounts
of FaRM memory, the NIC memory for caching page table
entry records will be exhausted.

e Each active transfer has some state while the transfer is
underway. With many concurrent transfers, NIC memory for
active operations can overflow.



Solutions

Number of FaRM servers is actually limited by the NIC
capacity (128 with older NICs, 1024 with newer NICs)

FaRM employs 1MB pages (“huge” kernel pages).

Careful attention to load balancing reduces risk of hot-spots
that might have large numbers of simultaneous transfers.



FaRM Setup

e Every region replicated on one primary and f backups
* Only the primary serves reads, all f+1 see commits+writes

e Replication yields availability even with one node (similar
to chain replication)

e Regions: each an array of objects
e Object layout: header with version # and lock
e For each other server:

* Incoming log/message queue, written by RDMA, read by
polling

e All this in non-volatile RAM



FaRM Transaction Execution

E_xecute
P1
B1
P2
B2

* One-sided RDMA reads; remember simple objects

e Buffer writes on local node



FaRM Commit Protocol

Execute Lock

It
Pt

B |

P2

B2

* Writes LOCK record to primary of written objects

* Primary attempts to lock and sends back message
reporting succeed or not



Lock Details

* Coordinator sends to each primary of written
object

* Object ID, Version # read initially, new value

* Primary polls log, sees record
e Validates whether the version is the same
* Locks object if possible

e Atomic compare & swap, “locked” flag is high-order
bit in version #

e Sends yes/no



FaRM Commit Protocol

Execute Lock Validate Replicate

¢ mie &L
o 1
Bl
P2
B2

* Logs to Backups using COMMIT-BACKUP
e Same as LOCK command: oid, v#, new-value

 Coordinator waits until it receives all hardware acks



C
P1
B1
P2
B2

FaRM Commit Protocol

Update

and

Execute Lock Validate Replicate Unlock
[ |

) < T 3 4 ¢ 4 4 4
\ / 1 1 | | 4
\ \ 1 I |
\' ‘| ,- + by
‘,,I \ I v |l 1
T T T T v
\ 1 1 I H
1 Vo
(| L | H
v b 4 \
(] Vo i
1 UL

Writes COMMIT-PRIMARY

Primary processes by updating and unlocking

Responds to application



Fault Tolerance

Regions replicated on f+1 nodes
Configuration manager monitors liveness

Zookeeper (Paxos RSM) maintains configuration
information

* Referred to as “Vertical Paxos”
Configuration manager detects failed nodes
* Updates configuration in Zookeeper

* Swaps in a new replica



Fault Tolerance Analysis

* Why does transaction coordinator send COMMIT-

PRIMARY only after getting acks for COMMIT-
BACKUPs?

* Transaction coordinator can respond back to
application after receiving just one COMMIT-
PRIMARY ack. Why?



FaRM Commit Protocol

Execute Lock Validate

c - . /Decision
i % 4

P1 ¥ ]

B1 ¥ +

P2

B2

* Validates read set using one-sided RDMA
* Check whether version # hasn’t changed

 Why is this correct? Why is this desirable?



C
P1

B1
P2
B2

FaRM Commit Protocol

Truncate

JETERYERVAR

e Coordinator truncates after receiving all ack from Primaries

 Piggybacking in other log records

e Backups apply updates at truncation time



Performance

f+1 replicas instead of 2f+1 replicas
Reads satisfied only at the primary

Coordinator is not replicated - just the App Server
as in TAPIR

Read validation ensures that primaries do not
obtain locks
* No CPU involvement

e But adds additional latency due to a separate phase



