
Hardware-Assisted	
Transactions

Arvind	Krishnamurthy	

University	of	Washington



FaRM

• Distributed	transaction	system	that	is	in	production	at	
Microsoft	

• Single	datacenter	solution	

• Hardware	assisted:	

• RDMA	network	

• Form	of	NVRAM	to	provide	durable	transactions	

• Other	features:	

• How	to	perform	transactions	in	a	“shared	memory”	
model?	

• What	is	the	appropriate	form	of	OCC?



Network	often	a	performance	bottleneck

• Usual	setup:	
• Sockets	->	Kernel	TCP	->	NIC	driver	->	NIC	

• Expensive	CPU	operations	
• System	calls	

• Message	copies	

• Interrupts



RDMA	provides	kernel	bypass

• App	directly	interacts	with	
NIC	

• Shared	memory	mapping	
between	App	and	NIC	

• Can	perform	remote	
reads/writes	with	no	
interrupts	or	kernel	copies	

• RPCs:	sender	writes	to	
remote	memory,	receiver	
polls	local	queue	&	
executes	RPCs



FaRM’s	use	of	RDMA

• How	to	use	RDMA	for	transactions	and	replication?	

• Protocols	we	have	seen	require	receiver	CPU	to	
actively	process	messages	

• RDMA	used	in	three	ways:	

• One-sided	read	of	objects	during	transaction	
execution	

• RPC	composed	of	one-sided	writes	

• One-sided	writes	to	backups	from	Primary



FaRM’s	“NVRAM”

• FaRM	writes	go	to	RAM	not	disk	

• But	RAM	loses	content	in	power	failure	

• Could	write	to	RAM	of	f+1	machines.		But,	cannot	
handle	correlated	failures	

• FaRM	uses	batteries	in	every	rack	to	run	for	a	few	
minutes	

• Power	hardware	notifies	software	when	power	fails	

• Software	halts	all	transaction	processing	

• Writes	FaRM’s	RAM	to	SSD	in	a	few	minutes	

• On	restart,	reads	saved	memory	image	from	SSD



• Distributed	shared	memory	abstraction	

• Fixed	size	objects,	flat	address	space	
• Transparent	access	to	local	and	remote	objects

FaRM	Programming	Model



RDMA	choices

• RDMA	supports	two	reliable	modes:		

• one-sided	RDMA	uses	reliable	transfers	

• two-sided	RDMA	supports	datagram	transfers	

• FaRM	uses	one-sided	RDMA	(“reliable	transfer”)	
• This	results	in	an	all-to-all	connectivity	pattern.	

• Each	side	“authorizes”	the	other	side	of	a	connection	to	
do	read	or	write	operations	in	a	designed	region	of	
memory.



Use	of	one-sided	RDMA

• But	with	very	large	numbers	of	long-lived	RDMA	pairs	
of	this	kind,	the	RDMA	hardware	can	run	into	
problems:	

• NIC	caches	data	associated	with	the	mapped	memory	
regions.		Cache	can	become	over-full	and	performance	then	
degrades.	

• NIC	also	caches	the	page	mapping	data.	With	large	amounts	
of	FaRM	memory,	the	NIC	memory	for	caching	page	table	
entry	records	will	be	exhausted.	

• Each	active	transfer	has	some	state	while	the	transfer	is	
underway.		With	many	concurrent	transfers,	NIC	memory	for	
active	operations	can	overflow.



Solutions

• Number	of	FaRM	servers	is	actually	limited	by	the	NIC	
capacity	(128	with	older	NICs,	1024	with	newer	NICs)	

• FaRM	employs	1MB	pages	(“huge”	kernel	pages).			

• Careful	attention	to	load	balancing	reduces	risk	of	hot-spots	
that	might	have	large	numbers	of	simultaneous	transfers.



FaRM	Setup

• Every	region	replicated	on	one	primary	and	f	backups	

• Only	the	primary	serves	reads,	all	f+1	see	commits+writes	

• Replication	yields	availability	even	with	one	node	(similar	
to	chain	replication)	

• Regions:	each	an	array	of	objects	
• Object	layout:	header	with	version	#	and	lock	

• For	each	other	server:	
• Incoming	log/message	queue,	written	by	RDMA,	read	by	
polling	

• All	this	in	non-volatile	RAM



FaRM	Transaction	Execution

• One-sided	RDMA	reads;	remember	simple	objects	

• Buffer	writes	on	local	node
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FaRM	Commit	Protocol
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• Writes	LOCK	record	to	primary	of	written	objects	

• Primary	attempts	to	lock	and	sends	back	message	
reporting	succeed	or	not



Lock	Details

• Coordinator	sends	to	each	primary	of	written	
object	

• Object	ID,	Version	#	read	initially,	new	value	

• Primary	polls	log,	sees	record	

• Validates	whether	the	version	is	the	same	

• Locks	object	if	possible	

• Atomic	compare	&	swap,	“locked”	flag	is	high-order	
bit	in	version	#	

• Sends	yes/no



FaRM	Commit	Protocol
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• Logs	to	Backups	using	COMMIT-BACKUP	

• Same	as	LOCK	command:	oid,	v#,	new-value	

• Coordinator	waits	until	it	receives	all	hardware	acks



FaRM	Commit	Protocol
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Unlock

• Writes	COMMIT-PRIMARY	

• Primary	processes	by	updating	and	unlocking		

• Responds	to	application



Fault	Tolerance

• Regions	replicated	on	f+1	nodes	
• Configuration	manager	monitors	liveness	

• Zookeeper	(Paxos	RSM)	maintains	configuration	
information	

• Referred	to	as	“Vertical	Paxos”	
• Configuration	manager	detects	failed	nodes	

• Updates	configuration	in	Zookeeper	
• Swaps	in	a	new	replica



Fault	Tolerance	Analysis

• Why	does	transaction	coordinator	send	COMMIT-
PRIMARY	only	after	getting	acks	for	COMMIT-
BACKUPs?	

• Transaction	coordinator	can	respond	back	to	
application	after	receiving	just	one	COMMIT-
PRIMARY	ack.		Why?



FaRM	Commit	Protocol
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• Validates	read	set	using	one-sided	RDMA	

• Check	whether	version	#	hasn’t	changed	

• Why	is	this	correct?		Why	is	this	desirable?



FaRM	Commit	Protocol
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• Coordinator	truncates	after	receiving	all	ack	from	Primaries	

• Piggybacking	in	other	log	records	

• Backups	apply	updates	at	truncation	time

Truncate



Performance

• f+1	replicas	instead	of	2f+1	replicas	
• Reads	satisfied	only	at	the	primary	

• Coordinator	is	not	replicated	-	just	the	App	Server	
as	in	TAPIR	

• Read	validation	ensures	that	primaries	do	not	
obtain	locks	

• No	CPU	involvement	

• But	adds	additional	latency	due	to	a	separate	phase


