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Inverse Kinematics

Animating Characters

Many editing techniques rely on either:

• Interactive posing

• Putting constraints on bodyparts’ positions and
orientations (includes mapping sensor positions to
body motion)

• Optimizing over poses or sequences of poses

All three tasks require inverse kinematics

Goal

Several different approaches to IK, varying in
capability, complexity, and robustness

We want to be able to choose the right kind for
any particular motion editing task/tool

IK Problem Definition

1) Create a handle on body

• position or orientation

2) Pull on the handle

3) IK figures out how joint angles
should change
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More Formally

q actor state vector
(joint bundle)

Let:

C(q) constraint functions
that pull handles

Then:

solve for q such that C(q) = 0

What’s a Constraint?

Can be rich, complicated

But most common is very
simple:

Position constraint just
sets difference of two
vectors to zero:

qt,ft,st

qc

qf,ff

desired position d

xh,yh,zh,qh,fh,sh

q=[ xh,yh,zh,qh,fh,sh, qt,ft,st, qc, qf,ff ]

handle h(q)
C(q) = h(q) - d = 0

The Real problem & Approaches

The IK problem is usually very underspecified

• many solutions

• most bad (unnatural)

• how do we find a good one?

Two main approaches:

• Geometric algorithms

• Optimization/Differential based algorithms

Geometric

Use geometric relationships, trig, heuristics

Pros:

• fast, reproducible results

Cons:

• proprietary; no established methodology

• hard to generalize to multiple, interacting constraints

• cannot be integrated into dynamics systems



Page 3

Optimization Algorithms

Main Idea: use a numerical metric to specify
which solutions are good

metric - a function of state q (and/or state
velocity) that measures a quantity we’d like to
minimize

Example

Some commonly used metrics:

• joint stiffnesses

• minimal power consumption

• minimal deviation from “rest” pose

Problem statement:

Minimize metric G(q)
subject to satisfying C(q) = 0

An Approach to Optimization

If G(q) is quadratic, can use Sequential
Quadratic Programming (SQP)

• original problem highly non-linear, thus difficult

• SQP breaks it into sequence of quadratic
subproblems

• iteratively improve an initial guess at solution

• How?

Search and Step

Use constraints and metric to find direction Dq
that moves joints closer to constraints

Then qnew = q + a Dq where

Min C(q + a Dq)

Iterate whole process until C(q) is minimized

a
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Breaking it Down

Performing the integration qnew = q + a Dq is

easy (Brent’s alg. to find a)

Finding a good Dq is much trickier

Enter Derivatives.

What Derivatives Give Us

We want:

• a direction in which to move joints so that constraint
handles move towards goals

Constraint Derivatives tell us:

• in which direction constraint handles move if joints
move

Constraint derivatives

qt,ft,st

qc

qf,ff

desired position d

xh,yh,zh,qh,fh,sh

q=[ xh,yh,zh,qh,fh,sh, qt,ft,st, qc, qf,ff ]

handle h(q)

C(q) = h(q) - d = 0

( ) ( )C h∂ ∂=
∂ ∂

q q
q q

Jacobian Matrix

Can compute Jacobian for
each constraint / handle

Value of Jacobian
depends on current state

Jacobian linearly relates
joint angle velocity to
constraint velocity

… θθθθe …
x . 0 .

y . 1 .

z . 0 .

∂C
∂q

qe
handle C

∂C
∂qe
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Computing Derivatives

• Apply the chain rule

• Need to know how to compute
derivatives for each transformation

xh,yh,zh,qh,fh,sh

qt,ft,st

qc

qf,ff

vs

y

x

z

vsvs

( , , ) ( , , ) ( , ,
(

) ( , )
)w

st t th h h h h h f f

c

cc

x y z θ φ σ θ φ
θ

θ
σ θ φ

θ

∂

∂

∂
=

∂

v
T R TR T TR v

R

( , , ) ( , , ) ( , , ) ( , )( )w st t th h h h h h f fcx y z θ φ σ θ φ σ θ φθ=v T R TR TR TR v

Jacobian Matrix

Have efficient techniques for computing
Jacobians

But how do we use it to compute Dq ?

• Constrained optimization

• Unconstrained optimization

Constrained Optimization

• Many formulations (e.g. Lagrangian, Lagrange
Multipliers)

• All involve solving a linear system comprised of
Jacobians, the quadratic metric, and other quantities

Result: constraints satisfied (if possible), metric
minimized subject to constraints

( )minimize

subject to ( )

G q
q

C q

( )minimize

subject to ( )

G q
q

C q

Constrained Performance

Pros:

• Enforces constraints exactly

• Has a good “feel” in interactive dragging

• Quadratic convergence

Cons:

• A Dark Art to master

• near-singular configurations cause instability
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Unconstrained Optimization

Main Idea: treat each constraint as a separate
metric, then just minimize combined sum of all
individual metrics, plus the original

• Many names: penalty method, soft constraints,
Jacobian Transpose

• physical analogy: placing damped springs on all
constraints

– each spring pulls on constraint with force
proportional to violation

2( ) ( ) ( )G q G q C q′ = +∑
2( ) ( ) ( )G q G q C q′ = +∑

Unconstrained Performance

Pros:
• Simple, no linear system to solve, each iteration is fast

• near-singular configurations less of problem

Cons:
• Constraints fight against each other and original

metric

• sloppy interactive dragging (can’t maintain
constraints)

• linear convergence

Why Does Convergence Matter?

Trying to drive C(q) to zero:

1 2 3 4 5

.25 .0625 .015 .004 .0009

.5 .25 .125 .0625 .0313

2 4 8 16 32

# Iterations

quadratic C(q)

linear C(q)

linear/quadratic

Recap and Conclusions

Inverse Kinematics

• Geometric algorithms

– fast, predictable for special purpose needs

– don’t generalize to multiple constraints or physics

• Optimization-based algorithms

– Constrained vs. unconstrained methods
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Recap and Conclusions

Constrained optimization

• achieves true constrained minimum of metric

• solid feel and fast convergence

• involves arcane math

• near-singular configurations must be tamed

Recap and Conclusions

Unconstrained optimization

• near-singular configurations manageable

• spongy feel

• poor convergence

• easy to get penalty method up and running


