Reading

15. Parametric surfaces

Required:

- Watt, 2.1.4, 3.4-3.5.

Optional

- Watt, 3.6.
- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations

- Explicit $z=f(x, y)$ (a.k.a., a "height field")
- what if the curve isn't a function, like a sphere?

- Implicit $g(x, y, z)=0$
- Parametric $S(u, v)=(x(u, v), y(u, v), z(u, v))$
- For the sphere:
$x(u, v)=r \cos 2 \pi v \sin \pi u$
$y(u, v)=r \sin 2 \pi v \sin \pi u$ $z(u, v)=r \cos \pi u$

As with curves, we'll focus on parametric surfaces.

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $x y$-plane:

$$
C(u)=\left[\begin{array}{c}
c_{x}(u) \\
c_{y}(u) \\
0 \\
1
\end{array}\right]
$$

Let $R_{x}(\theta)$ be a rotation about the x-axis.
Find: A surface $S(u, v)$ which is $C(u)$ rotated about the x-axis.

Solution:

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an $\left(x_{c} y_{c}\right)$ coordinate system with origin O_{c}.
- For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.

Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.

2. Moving. Use the Frenet frame of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

$$
\begin{aligned}
& \mathbf{t}(v)=\text { normalize }\left[T^{\prime}(v)\right] \\
& \mathbf{b}(v)=\text { normalize }\left[T^{\prime}(v) \times T^{\prime \prime}(v)\right] \\
& \mathbf{n}(v)=\mathbf{b}(v) \times \mathbf{t}(v)
\end{aligned}
$$

As we move along $T(v)$, the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the normal plane.
- Place O_{c} on $T(v)$.
- Align x_{c} for $C(u)$ with \mathbf{b}.
- Align y_{c} for $C(u)$ with -n.

If $T(v)$ is a circle, you get a surface of revolution exactly!

What happens at inflection points, i.e., where curvature goes to zero?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(v)$.
- ...

Tensor product Bézier surfaces, cont.

Let's walk through the steps:

Which control points are interpolated by the surface?

Matrix form of Bézier curves and surfaces

Recall that Bézier curves can be written in terms of the Bernstein polynomials:

$$
Q(u)=\sum_{i=0}^{n} V_{i} b_{i}(u)
$$

They can also be written in a matrix form:

$$
\begin{aligned}
Q^{T}(u) & =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{0}^{T} \\
V_{1}^{T} \\
V_{2}^{T} \\
V_{3}^{T}
\end{array}\right] \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \mathbf{M}_{\text {Bezier }} \mathbf{V}_{\text {curve }}
\end{aligned}
$$

Tensor product surfaces can be written out similarly:

$$
\begin{aligned}
S(u, v) & =\sum_{i=0}^{n} \sum_{j=0}^{n} V_{i j} b_{i}(u) b_{j}(v) \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \mathbf{M}_{\text {Bézier }} \mathbf{V}_{\text {surface }} \mathbf{M}_{\text {Bézier }}^{T}\left[\begin{array}{c}
v^{3} \\
v^{2} \\
v \\
1
\end{array}\right]
\end{aligned}
$$

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^{2} continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-spline surfaces, cont.

Which B-spline control points are interpolated by the surface?

Matrix form of B-spline surfaces

Recall that we could write a matrix form for generating Bezier control points from B-spline control points for curves:

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{0}^{T} \\
V_{1}^{T} \\
V_{2}^{T} \\
V_{3}^{T}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right]\left[\begin{array}{c}
B_{0}^{T} \\
B_{1}^{T} \\
B_{2}^{T} \\
B_{3}^{T}
\end{array}\right]} \\
& \mathbf{V}_{\text {curve }}=\mathbf{M}_{\text {B-spline }} \mathbf{B}_{\text {curve }}
\end{aligned}
$$

We can arrive at a similar form for tensor product B-spline surfaces:

$$
\mathbf{V}_{\text {sufface }}=\mathbf{M}_{\text {B-spline }} \mathbf{B}_{\text {surface }} \mathbf{M}_{\text {B-spline }}^{\top}
$$

Tensor product B-splines, cont.

Another example:

Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the $u-v$ domain.

- Define a closed curve in the $u-v$ domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.

