Affine transformations

Reading

Required:
¢ Foley, et al, Chapter 5.1-5.5.

Further reading:

+ David F. Rogers and J. Alan Adams, Mathematical Elements
for Computer Graphics, 2" Ed., McGraw-Hill, New York, 1990,
Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in
another: (x'\y',z") = f(x,y,2).
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These transformations can be very simple, such as scaling each
coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with
matrix operations.

Representation

We can represent a point, p = (x,y) in the plane

X
¢ as a column vector
y

+ as arow vector [X y]




Representation, cont.

We can represent a 2-D transformation M by a matrix

a b
M =
c d

If p is a column vector, M goes on the left:

p'=Mp

X' a b x
y'| [c djy
If p is a row vector, M7 goes on the right:
p'=pM’
a Cc
x vyl S
We will use column vectors.
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Two-dimensional transformations
Here's all you get with a 2 x 2 transformation matrix M:

x'| |a bl x

v [e d]ly
50 X'=ax+ by

y'=cx+dy

We will develop some intimacy with the elements a, b, c, d...

Identity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

1 0
0 1

+ Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let a and d take on any positive value:
+ Gives a scaling matrix:
a 0
o
+ Provides differential scaling in x and y:

X'=ax
y'=dy




Scaling

a 0 X'=ax
0 d y'=dy
2 0
2 |:| 2 O 2
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Suppose we keep b=c=0, but let either a or d go negative.

Examples:
-1 0
0 1
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Now let's leave a=d=1 and experiment b. . . .
The matrix F‘ b}

0 1
X'=X+hy
gives: y.:y
y y

A

o3
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects the unit

square: a bl
.
a bjJo 110
c dfo o 11
y
J
|48 r
p q o
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Effect on unit square, cont.

Observe:

¢ Origin invariant under M

+ M can be determined just by knowing how the corners (1,0)
and (0,1) are mapped

+ aand d give x- and y-scaling
+ b and c give x- and y-shearing
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Rotation

<

Yy
A

1] {cos(e)}
0] | sin(®) o)
0] [-sin@)] M=RO)=| .

— { } sin(é)
1 cos(6)

14
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Inverse Rotation

P
: ko

0

> X > X

cos(@) —sin(@)
sin(@) cos(f)

1

R(6) = {
R(6) =7
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Limitations of the 2 x 2 matrix

A 2 X 2 matrix allows

+ Scaling
+ Rotation
+ Reflection
¢ Shearing

Q: What important operation does that leave out?
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third
component to every point:

And then transform with a 3 x 3 matrix:

X' X 1 0 t,| X
y =T y|=|0 1 t,|y
w' 1 0 0 11
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Homogeneous coordinates

X' X 1 0 t,
y' |=T) y|=|0 1t
W'

110 0 1]1

Y Y
A

1 1

... gives translation!
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Rotation around arbitrary point
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Reflection around arbitrary axis

~S
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v
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Reflection around arbitrary axis

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

\"/\ For example, scaling: X' s, 0 0 O0fx
y'| |[0s, 0 0y
y z| |0 0 s, 0]z
1 0O 0 O 1y1
op |
T = Lo
X
.
z z
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Translation in 3D Rotation in 3D
X' 1 0 0 t,|x Rotation now has more possibilities in 3D:
y'|_|0 1 0 ty)y 1 0 0 0 Yy
z 001 t, ||z R.(6) = 0 cosé -sing O
1 0 00 1|1 7710 sne cos® 0O
0 O 0 1
- ) Z R
y cos¢ 0 snéd O X
Ry 0 1 00 N
¥/ -sng 0 cosd 0 = R
- c 0 0 1: Use right hand rule
cos¢ -sngé 0 O
R B ! R,(0) = sng cos¢ 0 O
0 0 10
0 0 0 1]
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Rotation in 3D

What about the inverses of 3D rotations?

Shearing in 3D

Shearing is also more complicated. Here is one example:

1 0 0 0] M x'] [1 b 0 0O]x
0 cosé# -sing O R y' 0 1 00|y
R(0)= 0 sin@ cosd O =
z' 0 01 0}z
0O O 0 1
- _ . 1 0 00 1|1
cosé 0 sné O X
0 1 0 O Ry
Ry (@) = R
y(6) -sing 0 cos® O = y Y
0 0 0 1 1
[cos® -singd 0 O] : ' y
R,(0) = sing cos¢ 0 O ; I/ x
0 0 10 ST X
e 0 0 1
~ z
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: : : Rotation that aligns 3 orthonormal vectors
Properties of affine transformations ) .
with the principal axes
All of the transformations we've looked at so far are examples of
“affine transformations.”
y*
Here are some useful properties of affine transformations:
+ Lines map to lines
+ Parallel lines remain parallel
+ Midpoints map to midpoints (in fact, ratios are always
preserved)
) S 1 1
ratio = P9l _ s _ [Pl
Jarl -t flarr]
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Summary

What to take away from this lecture:

*

*

*

All the names in boldface.
How points and transformations are represented.

What all the elements of a 2 x 2 transformation matrix do and
how these generalize to 3 x 3 transformations.

What homogeneous coordinates are and how they work for
affine transformations.

How to concatenate transformations.
The mathematical properties of affine transformations.
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