ODE / Creature Contest
Help Session

Outline

ODE and GLUT libraries
How the skeleton code works

— If you were going to adapt any skeleton code for any graphics applications in the future...
you could probably start with this instead of the other hairy assignments from this class

ODE basics
Project requirements

Open Dynamics Engine (ODE)

http://ode.org

Library for simulating articulated rigid body
dynamics

Fast, robust, built-in collision detection

Articulated structure = rigid bodies of various
shapes connected together with various kinds
of joints

OpenGL Utility Toolkit (GLUT)

e http://www.opengl.org/resources/libraries/

glut/
e Library for writing OpenGL programs

— Makes it easy to write an application that opens a
window and displays stuff

* Callback driven event processing

 Handle events from input devices: mouse,
keyboard, etc.

e Kind of like FLTK, minus GUI

Program Flow

e Both GLUT and ODE work like this:

— Set up some stuff, start main loop (handle events,
draw/simulate, repeat)

e —
User clicked
‘quit’

>
Handle Events

Tick physics/
redraw graphics/

whatever

Creature Contest Program Flow

1 I
Handle Events

Control/change
joint forces/‘think’
\ Tick physics /

Nitty gritty application details

The graphics loop is the main loop

After starting glutMainLoop(), no longer have
direct control

Need a physics simulation loop, too

glutldleFunc called when not drawing anything

— Update physics here (dWorldStep())
— Force redraw

glutDisplayFunc called to redraw

Class: CreatureWorld

Sets up graphics, physics, everything else
Contains:

— Main()

— 1 Creature object

— 1 Terrain object

Init graphics: GLUT window, mouse and keyboard
callbacks

Init physics: create ODE simulation environment, set
gravity to (0,0,-9.9), populate according to terrain and
creature build() functions

Init control: Start creature thought process

CreatureWorld (cont.)

* Each ‘tick’
— Tick control: creature.think(), up to you to implement
— Tick physics: dWorldStep()
— Redraw: glutPostRedisplay()

* Drawing function

— Camera controls (camera happens to follow a user-
specified position on creature, you can change this)

— Terrain responsible for drawing itself: terrain.draw()

— Creature responsible for drawing itself:
creature.draw()

Class: Terrain

Ground
Obstacles/ramps on ground
Height map

Build(): define the terrain, put it in physics
simulation

Draw(): describe how to draw it, can include
colors and textures

Class: Creature

* Articulated rigid-body structure held together
with joints

e Also contains some ‘brains’ for deciding how
to move and control joints

* YOU have to build it, draw it, and make a
controller for it:
— build(), draw(), start_thinking(), think()

ODE Basics

e Read the manual:
http://opende.sourceforge.net/wiki/
index.php/Manual

Some Terms

World: ‘a dynamics world’
— Think masses, forces, movement

Space: ‘a collision space’
— Think 3d shapes colliding, intersecting

— Collisions generate forces which have an effect on the
world

Body: a rigid body living in the world

Geom: geometry (for collision), need a geom to
spatially describe a body if you want it to collide
with anything

Joint: a constraint between two bodies

Rigid Body

A body has

— Position (of its center of mass)
— Mass, inertia matrix describing distribution of mass

— Orientation |
— Linear velocity /r \
— Angular velocity i £\ (
— NO PHYSICAL SHAPE! \///’:"7\-\ ////
* Unless you also define a geom ° \ |

— Lives in the WORLD!

* Moves, has forces applied to it, may be connected to other
bodies with joints

Geom

* Ageom has
— Shape (box, cylinder, etc)
— Possibly a body associated with it
— Lives in the SPACE!

e Each limb of your creature will be a body plus a
geom

— Define a geom in the same shape and position as the
body’s mass (see code for example)

— Once attached to a body, a geom will have same
position/orientation

Geom (cont.)

* |n starter code:
— geoms are all box shaped
— put in a vector of geoms for drawing and manipulating

— draw function loops over each boxy geom, gets
position and scale factor, draws it, and draws its
shadow

* If you have differently shaped geoms, you should handle
keep track of them and draw them differently

* Creature class includes function to turn geom/
body position into transformation matrix for easy
drawing

Axis 2 Universal

Joint)‘7 _—

e Connects two bodies
e Livesin the WORLD

Axis Hinge joint
e Lots of kinds... 1

Axis 1

Body1 Anchor Body 2

Anchor

4

Body 1 3
y Body 2 &

Ball and Socket

Body 2

Controlling Joints

Read the manual, experiment, look at examples... I'm
learning this along with you
Motors

— specify a velocity and the maximum force you want to use
to achieve this velocity

Stops

— Prevent joints from moving along whole range of motion
(eg. Your knee doesn’t bend backwards)

— Limit forces when using motors

Motion parameters (dParamVel, dParamLoStop,
dParamFMax are a few)

Set force/torque directly

Collision Detection

* Already set up for you (look at cb_near for
more details)

* Internal check to see which objects in the
space are colliding

— create contact points at each collision

— create a joint (between bodies) at each contact
point

— force colliding bodies away from each other
— destroy contact joints before next time step

General things you might end up
tweaking

Read the manual for different ways to tune your
simulation

dWorldStep vs dWorldQuickStep

— QuickStep useful when your simulation has >100s of
objects... less accurate and stable

— Should probably use constant physics time step but
starter code tries to keep constant animation rate...
tweak this if your simulations have stability problems

Error Reduction Parameter (erp)
Constraint Force Mixing (cfm)
Friction... maybe skeleton code doesn’t have it

Putting it together

Now you know the basics to give your creature
joints and limbs!

Gravity and collision simulations will happen
automatically

You need to define how the creature moves

No animation key frames here, have to do it all
in code...

Actual Project Requirements

 Make a creature that
walks from one zone,
across the playing field,
to the finish zone.

— Start: x<0 y
— Finish: x>1007 (variable S
course width, to be

determined, tellto
creature at start up)

Vague... grading... criteria...

I’m not sure how to invent new assignments
Have fun!! Do something cool!

— Hopefully the time and effort you put into it will be apparent
Get a creature that can stumble across a flat terrain

Make a new terrain (ahh, you don’t have to put these shapes into
the World, just into the Space)

Describe your design and controller in a short but intelligent-
sounding webpage write-up, include some graphics and/or
animations

Bonus points for dressing up your creature with faces/colors/
textures/etc. (as long as it also can get from start to finish)

| should make an actual webpage for this project and post this
information there

Constraints

Minimum torso size: 1x1x1
Maximum torso size: 10x10x10
Minimum density: not sure yet

Minimum leg length/width ratio: not sure yet,
can’t have infinitely thin legs

Maximum torque and velocity: not sure yet

These are to keep you from ‘cheating’, but the
creative ways you could cheat might be
Interesting

Basically...

| could pick random numbers, but maybe

that’s not the point
Just make something that walks, hops, or
slithers and doesn’t really cheat

“How do | know if I’'m cheating?”

— Does it touch the ground a few times between

start and finish area

Speed, style, creativity will be judged
subjectively by the class...

Check out these blocky creatures

e Karl Sims
— Evolved Virtual Creatures (SIGGRAPH 1994)

— http://www.karlsims.com/evolved-virtual-
creatures.html

