
1

Distribution Ray Tracing

Brian Curless

CSE 557

Fall 2013

2

Reading

Required:

� Shirley, 13.11, 14.1-14.3

Further reading:

� A. Glassner. An Introduction to Ray Tracing.

Academic Press, 1989. [In the lab.]

� Robert L. Cook, Thomas Porter, Loren

Carpenter.

“Distributed Ray Tracing.” Computer Graphics

(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-

145. 1984.

� James T. Kajiya. “The Rendering Equation.”

Computer Graphics (Proceedings of SIGGRAPH

86). 20 (4). pp. 143-150. 1986.

3

Pixel anti-aliasing

No anti-aliasing

Pixel anti-aliasing

All of this assumes that inter-reflection behaves in a

mirror-like fashion…
4

BRDF

The diffuse+specular parts of the Blinn-Phong

illumination model are a mapping from light to

viewing directions:

The mapping function fr is often written in terms of

incoming (light) directions ωin and outgoing (viewing)

directions ωout:

This function is called the Bi-directional Reflectance

Distribution Function (BRDF).

Here’s a plot with ωin held constant:

BRDF’s can be quite sophisticated…

(, () or)out outin inr rf fω ω ω ω→

(,)outinrf ω ω
ωin

 (,)

L

L r

B

f

I

I

+

  +
 ⋅ ⋅ +   

=

L V

L V

L V

s

d s

n

I = k + k()N L N

5

BRDF’s exhibit Helmholtz reciprocity:

That means we can take two equivalent views of

reflection. Suppose ωin = L and ωout = V:

We can now think of the BRDF as weighting light

coming in from all directions, which can be added up:

Or, written more generally:

Light reflection with BRDFs

L

()rf → VL

V

()rf → LV

()() () ()
H

rI I f d→= ⋅∫ VV L L L N L

()() () ()
H

out outin in in inrI I f dω ω ω ω ω ω→= ⋅∫ N

(())out outin inr rf fω ω ω ω→ →=

6

Simulating gloss and translucency

The mirror-like form of reflection, when used to

approximate glossy surfaces, introduces a kind of

aliasing, because we are under-sampling reflection

(and refraction).

For example:

Distributing rays over reflection directions gives:

7

Reflection anti-aliasing

Reflection anti-aliasing

8

Pixel and reflection anti-aliasing

Pixel and reflection anti-aliasing

9

Full anti-aliasing

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively expensive,

especially after following the rays recursively.

We’ll look at ways to approximate high-dimensional

integrals…

10

Approximating integrals

Let’s say we want to compute the integral of a

function:

If f(x) is not known analytically, but can be evaluated,

then we can approximate the integral by:

where we have sampled n times at spacing ∆x. If these

samples are distributed over an interval w, then

and the summation becomes:

Evaluating an integral in this manner is called

quadrature.

()F f x dx= ∫

=

≈ ∆ ∆∑
1

()
n

i

F f i x x

=

≈ ∆∑
1

()
n

i

w
F f i x

n

∆ = w
x

n

11

A stochastic approach

An alternative to distributing the sample positions

regularly is to distribute them stochastically.

Let’s say the position in x is a random variable X, which

is distributed according to p(x), a probability density

function (non-negative, integrates to unity).

Recall some of the “rules” of random variables:

E[X] ≡

V[X] ≡

E[k X] =

V[k X] =

We can also show that for independent random

variables X and Y:

E[X + Y] =

V[X + Y] =

12

A stochastic approach (con’t)

We can now approximate E[X] as the average of n

samples:

Where the Xi are independent and identically

distributed (i.i.d.) random variables, each with

distribution p(x).

In fact, the summation is itself another random

variable. What is it’s expected value and variance?

=

≈ ∑
1

1
[]

n

i

i

E X X
n

13

Integrals as expected values

Suppose now we have a function of a random variable,

g(X).

The expected value is:

Getting back to our original problem of estimating an

integral, can we choose g(X) so that:

[()] () ()E g X g x p x dx= ∫

= =∫ () E[()] ?F f x dx g X

14

Monte Carlo integration

Thus, given a set of samples positions, Xi, we can

estimate the integral as:

This procedure is known as Monte Carlo integration.

What is the variance of the estimate?

We want a low variance estimate. What variables

and/or functions are under our control here?

=

≈ ∑
1

1 ()

()

n
i

i i

f X
F

n p X

=

 
= 

 
∑

1

1 ()

()

n
i

i i

f X
V

n p X

15

Uniform sampling

Suppose that the unknown function we are

integrating happens to be a normalized box function

of width a:

Suppose we now try to estimate the integral of f(x)

with uniform sampling over an interval of width w (i.e.,

choosing X from a uniform distribution):

where w ≥ a.

1/ / 2
()

0 otherwise

w x w
p x

≤
= 


1/ / 2
()

0 otherwise

a x a
f x

≤
= 


16

Importance sampling

A better approach, if f(x) is non-negative, would be to

choose p(x) ~ f(x). In fact, this choice would be optimal.

Why don’t we just do that?

Alternatively, we can use heuristics to guess where f(x)

will be large and choose p(x) based on those heuristics.

This approach is called importance sampling.

17

Stratified sampling

An improvement on importance sampling is stratified

sampling.

The idea is that, given your probability function:

� You can break it up into bins of equal probability

area (i.e., equal likelihood).

� Then choose a sample from each bin.

18

Summing over ray paths

We can think of this problem in terms of enumerated

rays:

The intensity at a pixel is the sum over the primary

rays:

For a given primary ray, its intensity depends on

secondary rays:

Substituting back in:

1
()

n

pixel i

i

I I r
n

= ∑

= →∑() () ()i ij r ij i

j

I r I r f r r

= →∑∑
1

() ()pixel ij r ij i

i j

I I r f r r
n

19

Summing over ray paths

We can incorporate tertiary rays next:

Each triple i,j,k corresponds to a ray path:

So, we can see that ray tracing is a way to approximate a

complex, nested light transport integral with a summation

over ray paths (of arbitrary length!).

Problem: too expensive to sum over all paths.

Solution: choose a small number of “good” paths.

= → →∑∑∑
1

() () ()pixel ijk r ijk ij r ij i

i j k

I I r f r r f r r
n

→ →ijk ij ir r r

20

Let’s return to the glossy reflection model, and modify

it – for purposes of illustration – as follows:

We can visualize the span of rays we want to integrate

over, within a pixel:

Glossy reflection revisited

21

Returning to the reflection example, Whitted ray

tracing replaces the glossy reflection with mirror

reflection:

Thus, we render with anti-aliasing as follows:

Whitted ray tracing

22

Let’ return to our original (simplified) glossy reflection

model:

An alternative way to follow rays is by making random

decisions along the way – a.k.a., Monte Carlo path

tracing. If we distribute rays uniformly over pixels and

reflection directions, we get:

Monte Carlo path tracing

23

The problem is that lots of samples are “wasted.”

Using again our glossy reflection model:

Let’s now randomly choose rays, but according to a

probability that favors more important reflection

directions, i.e., use importance sampling:

Importance sampling

24

We still have a problem that rays may be clumped

together. We can improve on this by splitting

reflection into zones:

Now let’s restrict our randomness to within these

zones, i.e. use stratified sampling:

Stratified sampling

25

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a

2D pixel (here 16 rays/pixel):

The stratified pattern on the right is also sometimes

called a jittered sampling pattern.

One interesting side effect of these stochastic

sampling patterns is that they actually injects noise

into the solution (slightly grainier images). This noise

tends to be less objectionable than aliasing artifacts.

Random Stratified

26

Distribution ray tracing

These ideas can be combined to give a particular

method called distribution ray tracing [Cook84]:

� uses non-uniform (jittered) samples.

� replaces aliasing artifacts with noise.

� provides additional effects by distributing rays to

sample:
• Reflections and refractions

• Light source area

• Camera lens area

• Time

[This approach was originally called “distributed ray

tracing,” but we will call it distribution ray tracing (as

in probability distributions) so as not to confuse it with

a parallel computing approach.]

27

DRT pseudocode

TraceImage() looks basically the same, except now
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j) ← 0

for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))

p ← COP

d ←(s - p).normalize()

I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j) � I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 5*5.

28

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material) ← intersect (scene, p, d)

I ← shade(…)

R ← jitteredReflectDirection(N, -d, material, id)

I ← I + material.kr ∗ traceRay(scene, q, R, id)

return I

end function

29

Pre-sampling glossy reflections

(Quasi-Monte Carlo)

30

Distributing rays over light source area gives:

Soft shadows

31

The pinhole camera

The first camera - “camera obscura” - known to
Aristotle.

In 3D, we can visualize the blur induced by the pinhole
(a.k.a., aperture):

Q: How would we reduce blur?

32

Shrinking the pinhole

Q: What happens as we continue to shrink the

aperture?

33

Shrinking the pinhole, cont’d

34

The pinhole camera, revisited

We can think in terms of light heading toward the

image plane:

We can equivalently turn this around by following rays

from the viewer:

35

The pinhole camera, revisited

Given this flipped version:

how can we simulate a pinhole camera more

accurately?

36

Pinhole cameras in the real world require small apertures to

keep the image in focus.

Lenses focus a bundle of rays to one point => can have larger

aperture.

For a “thin” lens, we can approximately calculate where an

object point will be in focus using the the Gaussian lens

formula:

where f is the focal length of the lens.

Lenses

1 1 1+ =
i od d f

37

Depth of field

Lenses do have some limitations. The most noticeable is the

fact that points that are not in the object plane will appear

out of focus.

The depth of field is a measure of how far from the object

plane points can be before appearing “too blurry.”

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm 38

Simulating depth of field

Consider how rays flow between the image plane and

the in-focus plane:

We can model this as simply placing our image plane

at the in-focus location, in front of the finite aperture,

and then distributing rays over the aperture (instead of

the ideal center of projection):

39

Simulating depth of field, cont’d

40

In general, you can trace rays through a scene and

keep track of their id’s to handle all of these effects:

Chaining the ray id’s

41

DRT to simulate _________________

Distributing rays over time gives:

