Hierarchical Modeling

Brian Curless
CSE557
Fall 2013

Reading

Required:

+ Angel, sections 8.1 — 8.6, 8.8 (online handout)

Optional:

* OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

¢ spheres
¢ cubes
+ cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation
above?

=S

TRS

3D Example: A robotarm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by 6
+ Upper arm rotates in its xy-plane by ¢
¢ Lower arm rotates in its xy-plane by y

[Angel, 2011]

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

L (8) oyt b Ry 1) TLOM0) Kﬁ’\(

\/‘LM" | DWL(Qf

3D Example: A robotarm

An alternative interpretation is that we are taking the
original coordinate frames...

From parts to model to viewer

Model or object space

model
yll? —{

World space

view

Y

Ye Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M_model :

Matrix M_view:

maini()

{

M_view = compute_view_transform():

robot_arm():

robot_arm()

{

M_model = M_view*R_y(theta):;
base():
M_model = M_View*R_y(theta)*T(0.hl1,0)*R_=z(phi):

upper_arm() :
M_model = M_view*R_y(theta)*T(0.h1,0)
*R_z(phi)*T(0.h2.0)*R_z(psi):

lower_arm() :

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time, we can
just update it in place by concatenating matrices on the right:

Matrix M_modelview:

main()

{

M_modelview = compute_view_transform():

robot_arm():

robot_arm()
{
M_model *= R_y(theta):
base():
M_model *= T(0,hl1,0)*R_z(phi):
upper_arm() ;
M_model *= T(0.h2,0)*R_z(psi):

lower_arm() :

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main()

{

glMatrixMode(GL_MODELVIEW):
Matrix M = compute_view_xform():
glLoadMatrixf(M);

robot_arm():

robot_arm()

{
glRotatef(theta, 0.0, 1.0, 0.0):
base():
glTranslatef(0.0, hl, 0.0)
glRotatef(phi, 0.0, 0.0, 1.0):
lower_arm() :
glTranslatef(0.0, h2, 0.0):
glRotatef(psi, 0.0, 0.0, 1.0):

upper_arm() :

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

o

RR
R-F\ | /L—R

Ay

| Wheel

Right-front | | Right-rear || | Left-front Left-rear
wheel wheel wheel wheel

+ edges contain geometric transformations Y
(3]
+ nodes contain geometry (and possibly drawi
attributes) M

How might we
draw the tree for
the robot arm?

10

|p~Y
WNELN

A complex example: human figure

A’[,.”_,

Head |

Right-lower|| | Left-lower || Right-lower
arm leg leg

@)
Q: Wha% mbost Q\sible way to traverse this tree?

&« QRD{\’\ g/'lfQ{_

4

11

Human figure implementation, OpenGL

figure()
{
torso():
glPushMatrix():
glTranslate(...);
glRotate(...):
head():
glPopMatrix():
glPushMatrix():
glTranslate(...):
glRotate(...):
left_upper_arm():
glPushMatrix():
glTranslate(...):
glRotate(...):
left_lower_arm():
glPopMatrix():
glPopMatrix():

12

Animation

The above examples are called articulated models:
* rigid parts
+ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation in
production is key-frame animation.

+ Each joint specified at various key frames (not
necessarily the same as other joints)

+ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ A lot of skill on the part of the animator

6 1+ 6

14

