Hierarchical Modeling

Brian Curless
CSE 557
Fall 2014

Reading

Required:

¢ Angel, sections 8.1 - 8.6, 8.8 (online handout)

Optional:
¢ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

+ spheres

¢ cubes

+ cylinders

These symbols are instanced using an instance
transformation.

CAQA&A&

Q: What is the matrix for the instance transformation
above?

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

+ Base rotates about its vertical axis by
¢ Upper arm rotates in its xy~plane by ¢
¢ Lower arm rotates in its xy~plane by y

Lower arm

Upper arm

Base

[Angel, 2011]

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Lower arm
\I

Upper arm

€.
Base .

From parts to model to viewer

Model or object space

7 Mmodel

‘World space

view

Eye or camera space

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:
Matrix M model;

Matrix M view;

main ()

{

M view = compute_view_transform() ;

robot_arm() ;

robot_arm()
{
M model = M view*R_y (theta);
base() ;
M model = M View*R_y(theta)*T(0,hl,0)*R z(phi) ;
upper_arm() ;
M model = M view*R_y (theta)*T(0,hl1,0)
*R_z (phi) *T (0,h2,0) *R_z (psi) ;
lower_arm() ;

}

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it /n p/ace by concatenating
matrices on the right:

Matrix M modelview;

main ()

{

M _modelview = compute_view_transform() ;
robot_arm() ;

robot_arm()
{
M modelview *= R_y(theta);
base() ;
M _modelview *= T(0,hl,0)*R_z(phi);
upper_arm() ;
M modelview *= T(0,h2,0)*R_z(psi);

lower_arm 0O

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main ()

{

glMatrixMode (GL_MODELVIEW) ;
Matrix M = compute_view_xform();
glLoadMatrixf(M);

robot_arm() ;

robot_arm()

{
glRotatef(theta, 0.0, 1.0, 0.0);
base() ;
glTranslatef(0.0, hl, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower_arm() ;
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm() ;

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Chassis

ZRN

Right-rear || | Left-front
wheel wheel

3

Right-front Left-rear
wheel wheel

+ edges contain geometric transformations

+ nodes contain geometry (and possibly drawing
attributes)

How might we
draw the tree for
the robot arm?

9 10
A complex example: human figure Human figure implementation, OpenGL
’—‘ figure()
{
‘ torso() ;

glPushMatrix() ;

U glTranslate(...);
glRotate(...)’
head() ;
glPopMatrix() ;

glPushMatrix() ;

‘ glTranslate(...);
Mz, 'M.m glRotate(...);
o ; 12 : : left_upper_arm() ;
Head Lef;;;;:per ngl;;:pper Lenl-eugpper nghlle-;pper glPushMatrix() ;
ij[,,” lf\[,.,,, 'MW le glTranslate(..)
glRotate(...);
Left-lower || | Right-lower|| | Left-lower || |Right-lower left lower_arm();
i I leg leg glPopMatrix() ;
glPopMatrix() ;
Q: What's the most sensible way to traverse this tree? !
11 12

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation in
production is key-frame animation.

+ Each joint specified at various key frames (not
necessarily the same as other joints)

+ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ Alot of skill on the part of the animator

[()

