Hierarchical Modeling

Brian Curless
CSE 557
Fall 2015

Reading

Required:

+ Angel, sections 8.1 - 8.6, 8.8 (online handout)

Optional:

* OpenGL Programming Guide, chapter 3

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two
cuboids, with the following 3 degrees of freedom:

+ Base rotates about its vertical axis by & WA
¢ Upper arm rotates in its xy-plane by ¢

+ Lower arm rotates in its xy-plane by y /x/l\’\

\R/yi‘iﬁ T (00, () T2, R, (¥)

Werarm W
Z y y
Upperar s LA
Base o Ji /‘
- he
[Angel, 2011] ML iy

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

Upper arm

Base

From parts to model to viewer

-
%J

Model or object space

{(Mmodel
Y
World space
T
Z,,
M iew
\j
Ye Eye or camera space
/ ~

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute view_ transform();

robot_arm() ;

robot_arm()
{
M model = R _y(theta);
M =M view*M model;
base () ;
M model = R _y(theta)*T(0,hl,0)*R _z(phi);
M =M view*M model;
upper_arm() ;
M model = R y(theta)*T(0,hl,0)
*R_z (phi)*T(0,h2,0)*R_z(psi);
M =M view*M model;
lower_arm();

}
Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it /n p/ace by concatenating
matrices on the right:

Matrix M_modelview;

main ()

{

M modelview = compute view_transform() ;

robot_arm() ;

robot_arm()

{

M modelview *= R y(theta);

base () ;

M modelview *= T(0,hl,0)*R _z(phi);

upper_arm() ;

M modelview *= T(0,h2,0)*R _z(psi);

lower_arm();

Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main ()

{

glMatrixMode (GL_MODELVIEW) ;
Matrix M = compute view xform();
glLoadMatrixf(M) ;

robot_arm() ;

robot_arm()

{
glRotatef(theta, 0.0, 1.0, 0.0);
base () ;
glTranslatef(0.0, hl, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower arm() ;
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm() ;

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

Chassis Chassis
L \
M \ “ R-R L-F)
— “\ R-F \‘)/ L-R
Right-front | = Right-rear | Left-front Left-rear Wheel
wheel wheel wheel wheel

¢ edges contain geometric transformations

¢ nodes contain geometry (and possibly drawi
attributes)

How might we

draw the tree for l Mo A
the robot arm? BQ

A complex example: human figure

Left-upper
leg

Right-upper
leg

arm

arm

Left-lower | Right-lower

Left-lower
leg

Right-lower
leg

L

{ 2D
/7

Q: What’@@e ible way to traverse this tree?

10

Human figure implementation, OpenGL

figure ()
{
torso() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...);
head() ;
glPopMatrix() ;
glPushMatrix() ;
glTranslate(...);
glRotate(...);
left upper_arm();
glPushMatrix() ;
glTranslate(...);
glRotate(...);
left lower arm();
glPopMatrix() ;
glPopMatrix() ;

11

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

12

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

+ A good interactive system

+ A lot of skill on the part of the animator

0 1+ 60

13

