
Inverse Kinematics

Animating Characters

Many editing techniques rely on either:

• Interactive posing

• Putting constraints on bodyparts’ positions and
orientations (includes mapping sensor positions to
body motion)

• Optimizing over poses or sequences of poses

All three tasks require inverse kinematics

Goal

Several different approaches to IK, varying in
capability, complexity, and robustness

IK Problem Definition

1) Create a handle on body

• position or orientation

2) Pull on the handle

3) IK figures out how joint angles
should change

More Formally

q actor state vector
(joint bundle)

Let:

C(q) constraint functions
that pull handles

Then:

solve for q such that C(q) = 0

What’s a Constraint?

Can be rich, complicated

But most common is very
simple:

Position constraint just
sets difference of two
vectors to zero:

qt,ft,st

qc

qf,ff

desired positiondesired position dd

xh,yh,zh,qh,fh,sh

q=[xh,yh,zh,qh,fh,sh, qt,ft,st, qc, qf,ff]

handlehandle h(q)h(q)
C(q) = h(q) - d = 0

The Real problem & Approaches

The IK problem is usually very underspecified

• many solutions

• most bad (unnatural)

• how do we find a good one?

Two main approaches:

• Geometric algorithms

• Optimization/Differential based algorithms

Geometric

Use geometric relationships, trig, heuristics

Pros:

• fast, reproducible results

Cons:

• proprietary; no established methodology

• hard to generalize to multiple, interacting constraints

• cannot be integrated into dynamics systems

Optimization Algorithms

Main Idea: use a numerical metric to specify
which solutions are good

metric - a function of state q (and/or state
velocity) that measures a quantity we’d like to
minimize

Example

Some commonly used metrics:

• joint stiffnesses

• minimal power consumption

• minimal deviation from “rest” pose

Problem statement:

Minimize metric G(q)
subject to satisfying C(q) = 0

What Derivatives Give Us

We want:

• a direction in which to move joints so that constraint
handles move towards goals

Constraint Derivatives tell us:

• in which direction constraint handles move if joints
move

Constraint derivatives

qt,ft,st

qc

qf,ff

desired positiondesired position dd

xh,yh,zh,qh,fh,sh

q=[xh,yh,zh,qh,fh,sh, qt,ft,st, qc, qf,ff]

handlehandle h(q)h(q)

C(q) = h(q) - d = 0C(q) = h(q) - d = 0

() ()C h∂ ∂=
∂ ∂

q q
q q

Computing Derivatives

• Apply the chain rule

• Need to know how to compute
derivatives for each transformation

xh,yh,zh,qh,fh,sh

qt,ft,st

qc

qf,ff

hs

y

x

z

vshs

(, ,) (, ,) ())), , ((,w
st t th h h h h h

c
f

c c
f

h x y z hθ φ σ θ φ
θθ
θσ θ φ∂ =

∂
∂
∂

T R TR T TRR

(, ,) (, ,) ()(), ,) (,w st t th h ch h h h f fh x y z hθ φ σ θ φ σ φθ θ= T R TR RT TR

Jacobian Matrix

Can compute Jacobian for
each constraint / handle

Value of Jacobian
depends on current state

Jacobian linearly relates
joint angle velocity to
constraint velocity

… θe …
x . 0 .

y . 1 .

z . 0 .

∂C
∂q

qe
handle C

∂C
∂qe

Jacobian Matrix

Efficient techniques for computing Jacobians
use a recursive traversal to compute all partial
derivatives.

IK problem statement

Minimize metric G(q)
subject to satisfying C(q) = 0

An Approach to Optimization

If G(q) is quadratic, can use Sequential
Quadratic Programming (SQP)

• original problem highly non-linear, thus difficult

• SQP breaks it into sequence of quadratic
subproblems

• iteratively improve an initial guess at solution

• How?

Unconstrained Optimization

Main Idea: treat each constraint as a separate
metric, then just minimize combined sum of all
individual metrics, plus the original

• Many names: penalty method, soft constraints,
Jacobian Transpose

• physical analogy: placing damped springs on all
constraints

– each spring pulls on constraint with force
proportional to violation

Unconstrained Optimization

Minimize

Move in the direction of the objective function
gradient:

We need to efficiently compute derivatives of
the objective G and constraints C.

2() () ()i i
i

G q G q w C q′ = +∑

2 i
i i

i

o

CG G
wC

q q q

G
q q

q
α

′ ∂∂ ∂= +
∂ ∂ ∂

′∂= +
∂

∑

Search and Step

Use constraints and metric to find direction Dq
that moves joints closer to constraints

Then qnew = q + a Dq where

Min C(q + a Dq)

Iterate whole process until C(q) is minimized

aa

Unconstrained Performance

Pros:
• Simple, no linear system to solve, each iteration is fast

• near-singular configurations less of a problem

Cons:
• Constraints fight against each other and original

metric

• sloppy interactive dragging (can’t maintain
constraints)

• linear convergence

Constrained Optimization

• Many formulations (e.g. Lagrangian, Lagrange
Multipliers)

• All involve solving a linear system comprised of
Jacobians, the quadratic metric

Result: constraints satisfied (if possible), metric
minimized subject to constraints

()minimize

subject to ()

G q
q

C q

Lagrangian formulation

Given

We define a Lagrangian

()minimize

subject to ()

G q
q

C q

()(,)L G= − ⋅q λ q λ C

()minimize
,

G − ⋅q λ C
q λ

Lagrangian formulation

At the solution of

We have

()minimize
,

G − ⋅q λ C
q λ

()()
{ , }

G∂ − ⋅
=

∂
q λ C

0
q λ

Solving the Lagrangian

To solve iteratively

We setup the linear system
2

2

T
T

new

new

d

d

d

d
α

 ∂ ∂  ∂ ∂  − − ∂ ∂    = ∂ ∂    ∂    −   ∂ 
     

= +     
    

G C
G C

q λq q
q q

λC
0 C

q

q q q

λ λ λ

()
{ , }

G∂ − ⋅
=

∂
q λ C

0
q λ

Lagrangian Performance

Pros:

• Enforces constraints exactly

• Has a good “feel” in interactive dragging

• Quadratic convergence

Cons:

• Large system of equations

• near-singular configurations cause instability

Why Does Convergence Matter?

Trying to drive C(q) to zero:

1 2 3 4 5

.25 .0625 .015 .004 .0009

.5 .25 .125 .0625 .0313

2 4 8 16 32

Iterations

quadratic C(q)

linear C(q)

linear/quadratic

IK == Constrained Particle system?

We can view the inverse kinematics problem as
a constrained particle system

Two types of constraints:

• Implicit constraints: keep points on the same body
part together

• Explicit constraints: allow us to control the position
of an arbitrary body point

Kinematic energy derivation

()

where ()

i i i

i

T
i i i

i

T

i i i

i

T

i i i

i

T

jT T
i i i

i

T

j jT T
j j j

j j

T m x x x W q p

T m Wp Wp

W W
m qp qp

q q

WW
m q p p q

q q

W W
q m p p q

q q

= =

   =    

   ∂ ∂=    ∂ ∂   

∂  ∂=   ∂ ∂   

∂ ∂   
=    ∂ ∂   

∫

∫

∫

∫

∑ ∫

Euler Lagrange Equations

Without potential energy the Lagrangian is:

So equations of motion are computed as

T

j j T
j

W W
L T q I q

q q

∂ ∂   
= =    ∂ ∂   

[]

0

0

0

T

j j T
j

T

j j T
j

d L

dt q

W Wd
I q

dt q q

W W
I q q

q q

 ∂ = ∂ 
 ∂ ∂   
  =    ∂ ∂    

 ∂ ∂   
  + =   ∂ ∂     

∑

∑

Mass matrix

The “F=ma” equation is given by

So the mass analog is given by the
mass matrix:

[] 0
T

j j T
j

T

j j
j

W W
I q q

q q

W W
M I

q q

 ∂ ∂   
  + =   ∂ ∂     

∂ ∂   
=    ∂ ∂   

∑

∑

F=mv world

Since we are only concerned with the geometric
interpretation of positions we can simplify the
equations by moving into the first-order world:

or

1

Q Mq

q M Q−

=

=

Constraints in the F=mv world

()

()

1

1

1 1

0

0c

T

c

cq M Q Q

C C
C q

q t

C C
M Q Q

q t

C C C C
M M Q

q q q t

C
Q

q
λ

λ

−

−

− −

= +
∂ ∂= + =
∂ ∂

∂ ∂+ + = ∂=
∂∂ ∂

 ∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂ 

Compute MCompute M--11

ComputeCompute λλ

Compute forcesCompute forces

Find the change in stateFind the change in state

Finally,
how does this help us solve IK

()

1

1

1 1

1

T

j j
j

T

c

c

W W
M I

q q

C C C C
M M Q

q q q t

C
Q

q

q M Q Q

λ

λ

−

−

− −

−

 ∂ ∂   
 =     ∂ ∂    

 ∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂ 

∂=
∂

= +

∑

Compute MCompute M--11

ComputeCompute λλ

Compute forcesCompute forces

Find the change in stateFind the change in state

Projected constraints speedup

Compute only
diagonal elements

of M

()

1

1

1 1

1

T

j j
j

T

c

c

W W
M I

q q

C C C C
M M Q

q q q t

C
Q

q

q M Q Q

λ

λ

−

−

− −

−

 ∂ ∂   
 =     ∂ ∂    

 ∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂ 

∂=
∂

= +

∑

Intermittent Constraints

During animation constraints may appear or
disappear

This leads to abrupt changes in characters
motion.

How can we alleviate this problem?

How to specify constraints without
losing your mind

Suppose we wanted these constraints:

• Distance between 2 points is d

• Direction between 2 points is orthogonal to v

We don’t want to plow through equations and
their derivatives every time we come up with a
new constraint.

Solution: Automatic Differentiation

Automatic differentiation

The basic idea:

1. Define derivatives for a few atomic operations

2. Use the expression parse tree and the chain rule to
compute derivatives of arbitrary expressions

()1 2 3E x x x= +

x1 x2

x3+

*

Multi-dimensional Auto Diff

Constraint: direction defined by two points must
be at angle α wrt unit vector v:

1 2

1 2

cos() 0
p p

v
p p

α− ⋅ − =
−

p1

p2

v

+

•

-

cos

|| ||

-

αα

q

q

Recap and Conclusions

Inverse Kinematics

• Geometric algorithms

– fast, predictable for special purpose needs

– don’t generalize to multiple constraints or physics

• Optimization-based algorithms

– Constrained vs. unconstrained methods

Unconstrained optimization

Near-singular configurations manageable

• Constraints and the objective fight against each other

• spongy feel

• poor convergence

• easy to get penalty method up and running

Constrained optimization

Achieves true constrained minimum of metric

• solid feel and fast convergence

• near-singular configurations must be tamed

• Two formulations:

– Full Hessian (standard constrained minimization approach)

– Reduced Hessian (Euler-Lagrange equations)

