Usability and Evaluation

Maneesh Agrawala

CS 558: Visualization Winter 2005

[lecture adapted from Guimbretiere, Hearst, Tory and Stasko]

Reflection

So far we have:

- Learned about theories of perception/cognition
- Seen many visualization tools and techniques
- Asserted that visualizations are effective

How can we more rigorously evaluate the effectiveness of the visualizations we create?

Measuring effectiveness

Usability

- Does it help people?
- Does it convey the information?
 - Speed
 - Errors
- Is it better than other techniques?

Impact

- Is it an influential idea?
- Does it lead to a new way of thinking?

Topics

Connecting mental model with real world User-centered design Evaluation techniques Designing controlled experiments Example: Identification and validation of design principles for assembly instructions

User-Centered Design

Why involve users?

Understand the users and their problems

- Visualization users are experts
- Our design intuition is not good enough

Expectation management

- Ensure users have realistic expectations
- Make users active stakeholders

[Slide adapted from Tory]

Philosophy

Focus on users and tasks

Directly study information needs and tasks

Empirical measurement

Test reactions and performance with prototypes

Iterative design

Qualitative assessments

Observe users encounter problem and use visualization to solve it

- Is problem/task as expected?
- Does visualization address task?
- Observation may suggest new designs or improvements

Observing users

Ethnography

- Observer immersed in all aspects of users' life
- Long-term (weeks/months/years)

Structured observation / Contextual inquiry

- Watch user encounter problems in context
- Short-term (a few hours)

Think aloud method

- Users say what they are thinking as they encounter problem and use visualization
- Rich source of information

Subjective assessment

Ask users about their task and whether the visualization addresses it

- Is visualization enjoyable, confusing, fun, ... ?
- Personal judgments can influence adoption and use

Common assessment techniques

- Meetings/collaborations: Interact and design with users
- Surveys: Users fill out questionnaire about their experience

LineDrive: Understanding the task

Online map usage survey: (122 respondents, Apr 2000)

How often do you print online directions? Always: 77.9% Most of the time: 17.2% Half the time: 4.9%

How often do you use directions in your own area? In-town use: 76.3% Out-of-town use: 24.7%

How do you use the text versus maps? Text: 15.6% Text mostly: 54.9% Equally: 14.8% Maps mostly: 12.3% Maps: 2.4%

> .0% .6%

Would you say online maps suffer from problems?

Print-outs too long:	50
Difficult to recover from wrong turn:	42
Overview map not useful:	50
Focus maps not useful:	64
Directions not reliable:	39

LineDrive: Prototype

Survey #2: (90 respondents, July 2000)

Which map preferred?

LineDrive: 87.8% Standard: 12.2%

Evaluation Techniques

Techniques

With users

- Qualitative assessments
- Subjective assessments
- Controlled experiments

Without users

- Cognitive walkthroughs
- GOMS analysis
- Heuristic evaluation

Cognitive walkthrough http://hcibib.org/tcuid/

Formalized technique for imagining user's thoughts and actions when using a interface

- Given detailed design description of interface
- Select task
- Tell story motivating user actions required to do task
- Interface should give motivations via prompts/feedback
- Breakdown in motivations imply problem with interface

Walkthroughs are difficult to do when tasks are ill defined and can be accomplished in many ways

Difficulty with GOMS

PHYSICAL MOVEMENTS					
Enter one keystroke on a standard keyboard:	.28 second	Ranges from. 07 second for highly skilled typists doing transcription, to 2 second for an average 60-wpm typist, to over 1 second for a bad typist. Random sequences, formulas, and commands take longer than plain text.			
Use mouse to point at object on screen	1.5 second	May be slightly lower but still at least 1 second for a small screen and a menu. Increases with larger screens, smaller objects.			
Move hand to pointing device or function key	.3 second	Ranges from .21 second for cursor keys to .36 second for a mouse.			
VISUAL PERCEPTION					
Respond to a brief light	.1 second	Varies with intensity, from .05 second for a bright light to .2 second for a dim one.			
Recognize a 6-letter word	.34 second				
Move eyes to new location on screen (saccade)	.23 second				
MENTAL ACTIONS					
Retrieve a simple item from long-term memory	1.2 second	A typical item might be a command abbreviation ("dir"). Time is roughly halved if the same item needs to be retrieved again immediately.			
Learn a single "step" in a procedure	25 seconds	May be less under some circumstances, but most research shows 10 to 15 seconds as a minimum. None of these figures include the time needed to get started in a training situation.			
Execute a mental "step"	.075 second	Ranges from .05 to .1 second, depending on what kind of mental step is being performed.			
Choose among methods	1.2 second	Ranges from .06 to at least 1.8 seconds, depending on complexity of factors influencing the			

Detailed GOMS analysis is daunting, especially if many action sequences lead to same results

Heuristic evaluation [Nielsen and Molich 90, 92]

Challenge: Identify general interface design guidelines

- Simple and natural dialog
- Speak user's language
- Minimize user memory load
- Be consistent
- Provide feedback
- Provide clearly marked exits
- Provide shortcuts
- Good error messages
- Prevent errors

Designing Controlled Experiments

Designing the experiment

Response variables (aka dependent variable(s))

- Outcome of experiment
- Usually measure user performance
 - Time
 - Errors

Factors (aka independent variables))

Attributes we manipulate/vary in each condition

Levels (aka values for independent variables)

Replication

How often to repeat each combination of choices

Example: Configuring a computer

Want to determine how to configure hardware for a personal workstation

- Hardware choices
 - Which CPU (three types)
 - How much memory (four amounts)
 - How many disk drives (from 1 to 3)
- Workload characteristics
 - Administration, management, scientific

We have four independent variables

Number of conditions

To isolate effect of each independent variable we consider all combinations (factorial design)

WL1	CPU1	Mem1	Disk1
WL1	CPU1	Mem1	Disk2
WL1	CPU1	Mem1	Disk3
WL1	CPU1	Mem2	Disk1
WL1	CPU1	Mem2	Disk2

(3 CPUs) * (4 memory sizes) * (3 disk sizes) * (3 workloads) = 108 combinations!

Goals

Internal validity

- Manipulation of independent variable is cause of change in dependent variable
 - Requires control of all independent variables
 - Required eliminating confounding variables
 - Requires that experiment is replicable

External validity

Results are generalizable to real world situtations

Confidence in results

Statistics

Reducing number of conditions

Vary only one independent variable leaving others fixed

Will miss effects of interactions

Ordering effects

Ordering of conditions is a variable that can confound the results

- Randomization
- Counterbalancing
- Latin square (partial counterbalancing)
- **...**

Between subjects design

Wilma and Betty use one interface

Dino and Fred use the other

<section-header><section-header><section-header><section-header>

Between vs. within subjects

Between subjects

- Each participant tries one condition
 - No ordering effects
 - Participants cannot compare conditions
 - Need more participants

Within subjects

- All participants try all conditions
 - Compare one person across conditions to isolate effects of individual differences (Statistically more powerful)
 - Requires fewer participants
 - Learning and fatigue effects

Statistical analysis

Compute aggregate statistics for each condition

Usually mean and standard deviation

Compute significance (p value)

- Likelihood that results are due to chance variation
- p = 0.05 usually considered significant

Statistical tests

T-tests (compare 2 conditions) ANOVA (compare >2 conditions) Correlation and regression Many others

Action diagrams show assembly action/operation

Stage 3: Comprehension

Set 1: Text + Action

Set 3: Parts menu + Structural + Action

- 44 Participants
- Given 1 of 4 instruction sets from Stage 2
- Assemble TV stand using instructions

Stage 3: Results

- No difference in assembly time by condition
- Instruction consultations: Low 8.9 High 7.1
- Box picture consultations: Low 9.1 High 3.4

Comments

- Should show relevant parts and attachments
- Structural diagrams and exploded view hard to use
- Text not very useful

Cognitive design principles

- Sequence assembly operations
- Ensure visibility of parts
- Illustrate assembly operations

Summary

- Visualizations must support specific users doing specific tasks
- "Showing the data" is not enough!
- Evaluation techniques can tell us whether our visualization techniques are effective & usable