
1Winter 2011 – Beyond Programmable Shading

Beyond Programmable Shading
Introduction

Aaron Lefohn - Intel / University of Washington

Mike Houston – AMD / Stanford

2Winter 2011 – Beyond Programmable Shading

Course Goals, To Learn…

• The state-of-the-art in real-time rendering hardware,
programming models, and algorithms

• The open research problems in real-time rendering algorithms
and programming models

3Winter 2011 – Beyond Programmable Shading

Course Goals (Detail). To Learn…

• Architecture / programming models

– How does a GPU work and what is difference between CPU and GPU?

– How to use all CPU and GPU FLOPs

– Parallel programming models and algorithms for graphics on CPU and GPU

– Open research problems in parallel programming models for graphics

• Rendering

– The modern real-time rendering pipeline (DirectX11)

– Latest CPU and GPU parallel programming models

– How to solve rendering problems by mixing traditional 3D pipeline with your
own task- or data-parallel algorithms

– State-of-the-art in real-time rendering algorithms

– Open research problems in real-time rendering

4Winter 2011 – Beyond Programmable Shading

Course History

• Beyond Programmable Shading SIGGRAPH courses

– 2008, 2009, 2010

• Beyond Programmable Shading Stanford course

– Spring 2010 (5 student ―pilot‖ course)

• Winter 2011

– First offered at University of Washington

– To be offered at Stanford in spring 2011

5Winter 2011 – Beyond Programmable Shading

Instructor Biographies

• Aaron Lefohn

– Director of research for the Advanced Rendering Technologies team at Intel

– Real-time rendering and rendering programming model research

– Neoptica, graphics startup acquired by Intel in 2007

– Rendering R&D at Pixar

– Ph.D. University of California, Davis with John Owens

– Early GPGPU researcher (beginning in 2002)

• Mike Houston

– Principal Architect for AMD Accelerated Parallel Processing

– One of the OpenCL and Fusion SW technical leads

– Heavily involved in GPU and Fusion hardware for parallel computation

– Ph.D. Stanford with Pat Hanrahan

– Early GPGPU researcher (beginning in 2002)

6Winter 2011 – Beyond Programmable Shading

Syllabus Overview

• Section 1: Review modern real-time rendering

– DirectX 9 pipeline (ca. 2003)

– DirectX 11 pipeline (ca. 2009)

– Rendering effects / terms (shadow maps, cube maps, *-buffers, …)

• Section 2: GPU architecture and parallel programming

– Interleaved lectures on arch., prog. models, rendering applications

– Focus on GPU (because it is new to you), but discuss CPU and GPU

• Section 3: Putting it all together

– Advanced rendering techniques that use 3D pipeline plus parallel algorithms

– New real-time rendering pipelines

– How games use these architectures, programming models, and techniques

– Open research problems

7Winter 2011 – Beyond Programmable Shading

Assignment (Rough) Overview

• Assignment 1 (15%, individual)

– Warm-up ―programmable shading‖ project using DirectX11

– I‘ll provide skeleton code, you write shaders and add rendering passes

• Assignment 2 (35%, individual)

– Heterogeneous CPU + GPU rendering project using CPU and GPU languages

– I‘ll provide skeleton code, but this assig. will involve a lot of coding

• Assignment 3, term project (50%, ~2 people / project)

– ―Render pretty pictures using all CPU and GPU cores‖

– New solutions to open problems in rendering or parallel algorithms

8Winter 2011 – Beyond Programmable Shading

Logistics I

• Computers

– Each registered student will be loaned a new computer for the term

– Location

– Grad students may keep machine at your UW desk (not at home)

– Other machines will be in Sieg 327

– Hardware details

– 12 CPU cores / 24 CPU threads (3.33 GHz Xeon) with 12 GB of RAM

– AMD 5870 GPU with 1 GB of RAM

– Software

– Intel Parallel Studio (including Cilk and many other parallelism tools)

– Microsoft DirectX SDK

– AMD StreamSDK (OpenCL)

– AMD GPU drivers (OpenGL, Direct3D, DirectCompute)

– HW and SW donated by Intel, AMD, and Microsoft

9Winter 2011 – Beyond Programmable Shading

Logistics II

• We will have several guest lecturers

– Natasha Tatarchuk from Bungie

– Andrew Lauritzen from Intel

– Likely a couple of others later in the term (TBA)

• Website

– UW: http://www.cs.washington.edu/education/courses/cse558/11wi/

• Mailing list

– UW: https://mailman.cs.washington.edu/mailman/listinfo/cse558

http://www.cs.washington.edu/education/courses/cse558/11wi/
https://mailman.cs.washington.edu/mailman/listinfo/cse558

10Winter 2011 – Beyond Programmable Shading

A Brief History of The Real-
Time Rendering Pipeline

11Winter 2011 – Beyond Programmable Shading

Early Software Renderers: Fixed Function

• 1970s through mid-1980s, most graphics pipelines were fixed-
function

• Must change core rendering code to change
geometry/lighting/surface model

12Winter 2011 – Beyond Programmable Shading

Mid’80s – Early 90s: Programmable Shading

• Most of graphics pipeline is fixed-function, highly optimized
architecture, but shaders allow users to customize small portions
of pipeline with simple language

– Shade Trees, Cook 1984

– An Image Synthesizer, Perlin 1985

– Renderman Shading Language, Hanrahan/Lawson 1990

13Winter 2011 – Beyond Programmable Shading

Cook Approach

Shader:

• Basic operations: dot products, norms, etc.

• Operations organized into trees

- Separated light source specification, surface reflectance, and
atmospheric effects

- Multiple trees: shade trees, light trees, atmosphere trees,
displacement maps

- Simple language

Slide courtesy of John Owens, UC Davis

14Winter 2011 – Beyond Programmable Shading

Shade Trees

Phong shading model:

Diffuse Specular

+

N L N H n

Color

Slide courtesy of John Owens, UC Davis

15Winter 2011 – Beyond Programmable Shading

Cook: Arbitrary Trees

Slide courtesy of John Owens, UC Davis

16Winter 2011 – Beyond Programmable Shading

Images from Perlin

17Winter 2011 – Beyond Programmable Shading

Contributions

Cook: Separates / modularizes factors that determine shading

– Geometric

– Material

– Environmental

Perlin: Language definition, conditionals, …

Leads to …

Slide courtesy of John Owens, UC Davis

18Winter 2011 – Beyond Programmable Shading

RenderMan—Hanrahan/Lawson

1. Abstract shading model based on optics for either
global/local illumination

2. Define interface between rendering program and shading
modules

3. High-level shading language

Three main kinds of shaders—light source, surface reflectance,
volume

Slide courtesy of John Owens, UC Davis

19Winter 2011 – Beyond Programmable Shading

Shading Language Summary

• Expert rendering engineers write highly optimized rendering
architecture

• Shading languages allow non-expert users to customize
renderer

• Consequence

– Renderers specify their own compilers, language runtimes, memory models

– User‘s shading code runs as inner-most loop---JIT ends up being very
important

20Winter 2011 – Beyond Programmable Shading

A Few (but not all) Seminal Papers

• Depth Buffer: Catmull 1978

• A-Buffer: Carpenter 1984

• Shade Trees: Cook 1984

• Alpha Blending: Porter and Duff 1984

• REYES: Cook, Carpenter, Catmull 1987

• Renderman: Hanrahan, Lawson 1990

• Reality Engine Graphics: Akeley 1993

• …

21Winter 2011 – Beyond Programmable Shading

Early 90s, Interactive Rendering Started Over

• Interactive software renderering (no GPUs yet)

• NOTE: SGI was building interactive rendering supercomputers,
but this was beginning of interactive 3D graphics on PC

Wolfenstein 3D, 1992 Doom I, 1993

22Winter 2011 – Beyond Programmable Shading

By Late 90s, Graphics Hardware Emerging

• ―Hey, let‘s build hardware to make a highly constrained
graphics pipeline go really fast‖

• 3DFX, NVIDIA, ATI, and countless others

• Eventually replaced SGI‘s supercomputers with plug-in boards
for PC

• OpenGL and Direct3D gained dominance as they provided the
only programming interface to GPUs

23Winter 2011 – Beyond Programmable Shading

OpenGL and DirectX (90’s to early 2000s)

• Fixed function pipeline

– Configure options via API

– Fixed per-vertex lighting model

– Fixed vertex transforms

– Limited texturing

• Rendering pipeline designed by expert HW architects with little
programmability available to end-user

24Winter 2011 – Beyond Programmable Shading

2001+: GPUs ―Rediscover‖ Programmable Shading

• NVIDIA GeForce 3 and ATI Radeon 8500

• Programmable vertex computations

– Up to 128 instructions

• Limited programmable fragment computations

– 8-16 instructions

25Winter 2011 – Beyond Programmable Shading

2008 (DirectX 10) Programmable Pipeline

• High-level shading languages

– GL Shading Language (GLSL) for OpenGL

– High Level Shading Language (HLSL) for DirectX

• 1000s of instructions permitted per stage

• Flow control, integers, arrays, temporary storage, large
number of textures, …

Input
Assembler

Vertex
Shader

Setup
Rasterizer

Output
Merger

Pixel
Shader

Geometry
Shader

26Winter 2011 – Beyond Programmable Shading

Beyond Programmable Shading:
Parallel Programming for

Graphics

27Winter 2011 – Beyond Programmable Shading

Completing the Circle

• Beginning in 2001/2002, researchers realized that
programmable GPUs could do more than graphics

– GPUs were becoming data-parallel co-processors

– A research field was born: General Purpose Programming on GPUs
(GPGPU)

– Scores of papers about data-parallel algorithms on GPUs

– Finance, physical simulation, medical imaging, …

28Winter 2011 – Beyond Programmable Shading

Non-Graphics GPU Programming Models

• From GPGPU, arose parallel programming models that let
users program GPUs without using the 3D APIs (OGL / D3D)

– Brook, Sh / RapidMind, PeakStream, CUDA, OpenCL, DirectCompute, …

• Focus on data-parallelism but task-parallelism is coming

– Nascent task parallelism in OpenCL

– Researchers have found ways to build task systems in GPU compute
languages

29Winter 2011 – Beyond Programmable Shading

―The Killer App of GPGPU is Graphics‖

• But then researchers starting writing rendering papers that
combined data-parallel GPU algorithms with the GPU
rendering pipeline

– Ray tracing and photon mapping, Purcell 2002-2003

– Summed Area Table Generation, Hensley 2005

– Approximate global illumination, Bunnell 2005

– Resolution Matched Shadow Maps, Lefohn 2007

– …

30Winter 2011 – Beyond Programmable Shading

Early ―Beyond Programmable Shading‖

“Fast Summed-Area Table Generation and its
Applications,”
Hensley et al., Eurographics 2005

“Resolution Matched Shadow Maps,”
Lefohn et al., ACM Transactions on Graphics 2007

“Dynamic Ambient Occlusion and Indirect
Lighting,” Bunnell, GPU Gems II, 2005

31Winter 2011 – Beyond Programmable Shading

Today: Creating New Rendering Algorithms

• What?

– Design interactive rendering algorithms that

– Adapt dynamically by performing per-frame analysis of rendering results

– Build dynamic per-frame data structures

– Use an alternate graphics pipeline

• How?

– Tools

– Use OpenGL/Direct3D for ―standard rendering‖ portion of algorithm

– Use OpenCL/DirectCompute for ―GPU parallel algorithm‖ portion

– Use Cilk, OpenCL, ArBB, … for ―CPU parallel algorithm portion‖

– Graphics programming uses mix of

– Data-parallelism

– Task-parallelism

– Pipeline parallelism

32Winter 2011 – Beyond Programmable Shading

“Sample Distribution Shadow Maps,”
Lauritzen et al., I3D 2011
“Render-analyze-render”

―Real-Time Concurrent Linked List Construction on the GPU,‖
Yang et al., EGSR 2010

“Render to user-defined data structure”

33Winter 2011 – Beyond Programmable Shading

―OptiX: A General Purpose Ray Tracing
Engine‖, Parket et al., SIGGRAPH 2010

―Real-Time Stochastic Rasterization
on Conventional GPU Architectures,‖ McGuire et al.,
High Performance Graphics 2010

Building New Real-Time
Rendering Pipelines

34Winter 2011 – Beyond Programmable Shading

Mainstream ―Beyond Programmable Shading‖

• In late 2009, Microsoft and Apple/Khronos released cross-
architecture APIs for programming GPUs in ways other than
through the 3D rendering API

– DirectX11: Direct3D plus DirectCompute

– OpenCL, interoperates with OpenGL

• DirectCompute designed to work closely with 3D rendering API

– Same language (HLSL)

– Same CPU-side API

– Same memory space

35Winter 2011 – Beyond Programmable Shading

DirectCompute in Graphics Products
(as of August 2010)

• Screen-Space Ambient Occlusion

– BattleForge

– Colin McRae Dirt 2

• Depth of Field

– Metro 2033

– Just Cause 2

• FFT Lens Effects

– FutureMark 3DMark 11

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

36Winter 2011 – Beyond Programmable Shading

DirectCompute in Shipping
Graphics Games/Demos

37Winter 2011 – Beyond Programmable Shading

Ambient Occlusion
DirectCompute Use in Real-Time Rendering Products

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

38Winter 2011 – Beyond Programmable Shading

Screen-Space Ambient Occlusion

• Conventional technique uses pixel shaders

– http://sites.google.com/site/perumaal/ao.pdf

• DirectCompute shaders enable more control of convolution filter cache

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

39Winter 2011 – Beyond Programmable Shading

HDSSAO Off

Image credit:
Codemasters

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

40Winter 2011 – Beyond Programmable Shading

HDSSAO On

Image credit:
Codemasters

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

41Winter 2011 – Beyond Programmable Shading

Depth of Field
DirectCompute Use in Real-Time Rendering Products

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

42Winter 2011 – Beyond Programmable Shading

Diffusion Post-Process Depth-of-Field

• Model the problem as a heat-flow simulation

– Blur radius analogous to heat distance traveled

– Controlled by ‗thermal conductivity‘ of image, which is defined by distance
from focal plane

– Solve thousands of tridiagonal linear systems in parallel each frame

• Original work at Pixar

–http://graphics.pixar.com/library/DepthOfField/paper.pdf

– Michael Kass, Aaron Lefohn, John Owens

• Metro 2033

– GDC 2010 Presentation by OlesShishkovtsov, 4A Games and AshuRege, NVIDIA

– http://developer.nvidia.com/object/gdc-2010.html#metro

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

http://graphics.pixar.com/library/DepthOfField/paper.pdf
http://developer.nvidia.com/object/gdc-2010.html
http://developer.nvidia.com/object/gdc-2010.html
http://developer.nvidia.com/object/gdc-2010.html

43Winter 2011 – Beyond Programmable Shading

Image credit:
A4 Games

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

44Winter 2011 – Beyond Programmable Shading

FFT Lens Effects
DirectCompute Use in Real-Time Rendering Products

45Winter 2011 – Beyond Programmable Shading

FFT Lens Effects in 3DMark11

• FFT rendered image

• Apply lens effect in frequency domain

• Inverse FFT

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

46Winter 2011 – Beyond Programmable Shading

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

47Winter 2011 – Beyond Programmable Shading

Slide from Chas Boyd,
Beyond Programmable Shading, SIGGRAPH 2010

48Winter 2011 – Beyond Programmable Shading

Recap:

How did/do programmers
create new real-time
rendering algorithms?

49Winter 2011 – Beyond Programmable Shading

Fixed Function Pipelines (DX7)

• Writing new rendering algorithms means

– Tricks with multitexture, stencil buffer, depth buffer, blending …

• Examples

– Stencil shadow volumes

– Hidden line removal

– …

50Winter 2011 – Beyond Programmable Shading

Programmable Shaders (DX8-10)

• Writing new rendering algorithms means

– Tricks with stencil buffer, depth buffer, blending …

– Plus: Writing shaders

• Examples

– User-defined materials

– User-defined lights

– User-defined data structures (built in texture memory)

51Winter 2011 – Beyond Programmable Shading

Software Graphics: Part I (DX11)

• Writing new rendering algorithms means

– Tricks with stencil buffer, depth buffer, blending …

– Plus: Writing shaders

– Plus: Writing data- and task-parallel algorithms

– Analyze results of rendering pipeline

– Synthesize data structures

• Examples

– Dynamic summed area table

– Dynamic quadtree adaptive shadow map

– Dynamic histogram-analysis shadow map

– Dynamic ambient occlusion

– Order-independent transparency

– …

52Winter 2011 – Beyond Programmable Shading

Software Graphics: Part II (DX11+)

• Writing new rendering algorithms means

– Tricks with stencil buffer, depth buffer, blending …

– Plus: Writing shaders

– Plus: Writing data- and task-parallel algorithms

– Analyze results of rendering pipeline

– Synthesize data structures

– Plus: Creating new and extended rendering pipelines

• Examples

– Stochastic rasterization rendering

– Ray tracing pipelines

– …

53Winter 2011 – Beyond Programmable Shading

What Next? Full Software Graphics?

• Intel‘s Larrabee

– Advertised to come full-circle to ―full software‖ real-time graphics

– Unfortunately, the product was cancelled

• Yet

– ―Mixing SW graphics with the HW pipeline‖ is becoming mainstream

– GPUs are becoming increasingly programmable

– CPUs are becoming more parallel/powerful

– CPUs and GPUs are getting ―closer‖ with integrated CPU-GPU chips

• So…

– Will fixed-function graphics hardware and fixed pipelines go away?

54Winter 2011 – Beyond Programmable Shading

The Wheel of Reincarnation

Gradually the processor became more complex.... Finally the
display processor came to resemble a full-fledged computer
with some special graphics features. And then a strange thing
happened. We felt compelled to add to the processor a second,
subsidiary processor, which, itself, began to grow in
complexity. It was then that we discovered a disturbing truth.
Designing a display processor can become a never-ending
cyclical process. In fact, we found the process so frustrating
that we have come to call it the "wheel of reincarnation.”

- Myer and Sutherland ―On The Design of Display Processors‖,
Communications of the ACM, 1968

55Winter 2011 – Beyond Programmable Shading

Will There Be Another Turn of The
Wheel of Reincarnation?

• Is ―the rise of SW graphics‖ a temporary (5-10) year window
as we go around the wheel of reincarnation or has the wheel
stopped turning?

• If it has stopped turning, why?

• If it hasn‘t stopped turning, what will be the next fixed-
function?

– The next turn of the wheel will not look like today’s graphics hardware

– It is a great time to be a graphics researcher because the killer-app SW
rendering pipelines/capabilities created now may define future fixed-
function hardware

56Winter 2011 – Beyond Programmable Shading

(A Few) Open Real-Time Rendering Problems

• More realistic ―eye rays‖

– Anti-aliasing

– Motion blur and depth-of-field

– Transparency

– Curved and highly-detailed geometry

– …

• More realistic illumination

– Shadows (hard, soft, volumetric)

– Global illumination

– Reflections

From Johan Andersson’s SIGGRAPH 2010 talk

57Winter 2011 – Beyond Programmable Shading

(A Few) Open Programming Model Problems

• Consistent programming models for CPU and GPU

• Consistent programming model for pipeline, data, and task
parallelism (―braided parallelism‖)

• More flexible rendering pipelines

• (Many more will come up throughout the course as you use
the state-of-the-art)

58Winter 2011 – Beyond Programmable Shading

Conclusions

• SW+ HW graphics is here today (beginning ―for real‖ in DX11)

– Graphics programming is no longer simply a single pre-defined pipeline

– Research is ablaze with SW real-time rendering research on GPUs and CPUs

• Future real-time rendering programming will likely consist of

– A pre-defined (Direct3D/OpenGL) rendering pipeline

– User-defined software pipelines

– User-defined data- and task-parallel code tightly coupled to graphics pipelines

• Is the wheel of reincarnation still turning?

59Winter 2011 – Beyond Programmable Shading

Questions?

• Email Aaron: alefohn@cs.washington.edu

• Email Mike: mhouston@graphics.stanford.edu

• Next lecture: ―A trip down the 2003 rasterization pipeline‖

