
1Winter 2011 – Beyond Programmable Shading

A Trip Down The
(2003) Rasterization Pipeline

Aaron Lefohn - Intel / University of Washington

Mike Houston – AMD / Stanford

2Winter 2011 – Beyond Programmable Shading

Acknowledgements

In addition to a little content by Aaron Lefohn and Mike
Houston, this slide deck is based on slides from

• Tomas Akenine-Möller (Lund University / Intel)

• Eric Demers (AMD)

• Kurt Akeley (Microsoft/Refocus Imaging) - CS248 Autumn
Quarter 2007

3Winter 2011 – Beyond Programmable Shading

This talk

• Overview of the real-time rendering pipeline available in
~2003 corresponding to graphics APIs:

– DirectX 9

– OpenGL 2.x

• To clarify

– There are many rendering pipelines in existence

– REYES

– Ray tracing

– DirectX11

– …

– Today’s lecture is about the ~2003 GPU hardware rendering pipeline

4Winter 2011 – Beyond Programmable Shading

If you need a deeper refresher

• See Kurt Akeley’s CS248 from Stanford

– http://www-graphics.stanford.edu/courses/cs248-07/schedule.php

– This material should serve as a solid refresher

• For an excellent “quick” review of programmable shading in
OpenCL, see Andrew Adams’ lecture at the above link

• GLSL tutorial

– http://www.lighthouse3d.com/opengl/glsl/

• Direct3D 9 tutorials

– http://www.directxtutorial.com/

– http://msdn.microsoft.com/en-us/library/bb944006(v=vs.85).aspx

• More references at the end of this deck

http://www-graphics.stanford.edu/courses/cs248-07/schedule.php
http://www-graphics.stanford.edu/courses/cs248-07/schedule.php
http://www-graphics.stanford.edu/courses/cs248-07/schedule.php
http://www-graphics.stanford.edu/courses/cs248-07/schedule.php
http://www-graphics.stanford.edu/courses/cs248-07/schedule.php
http://www.lighthouse3d.com/opengl/glsl/
http://www.directxtutorial.com/
http://msdn.microsoft.com/en-us/library/bb944006(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb944006(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb944006(v=vs.85).aspx

5Winter 2011 – Beyond Programmable Shading

The General Rasterization
Pipeline

6Winter 2011 – Beyond Programmable Shading

Rendering Problem Statement

• Rendering is the process of creating an image from a
computer representation of a 3D environment using
algorithms that simulate cameras, lights, reflections

• Rendering is an insatiable consumer of compute resources and
memory bandwidth

– Long history of special hardware created to accelerate rendering

– Rendering is great at consuming *all* available compute resources

7Winter 2011 – Beyond Programmable Shading

Objects and 3D space

• A virtual space is created within
a computer

• Space has all 3 geometrical
dimensions and, optionally,
time

• Objects within the space exist
and are composed of geometric
primitives and their parameters
(colors, surface properties)

• Primitives are simply points,
lines, triangles and perhaps
higher order surfaces

“How 3d graphics works” – How stuff works – Curt Franklin

8Winter 2011 – Beyond Programmable Shading

The Primitive

• A collection of vertices to create
points, lines, triangles, strips of
triangles, and meshes

• Attributes within the primitives
come from the vertex attributes

• Example uses OpenGL syntax

glBegin(GL_TRIANGLE_STRIP);

glColor(green);

glVertex2i(…); // 0

glVertex2i(…); // 1

glColor(red);

glVertex2i(…); // 2

glVertex2i(…); // 3

glEnd();

0

1 3

2

9Winter 2011 – Beyond Programmable Shading

The Primitive parameters

• Beyond geometry, primitives also have other parameters beyond
(XYZW) and also offer color and texture coordinates.

• An example of colors per vertex and simple shading:

Akeley, Hanrahan [3]

10Winter 2011 – Beyond Programmable Shading

General Rasterization Pipeline

• Geometry processing:

– Transforms geometry, generates more geometry, computes per-vertex
attributes

• Rasterization:

– Sets up a primitive (e.g., triangle), and finds all samples inside the
primitive

• Pixel processing

– Interpolates vertex attributes, and computes pixel color

Application
Geometry
Processing

Rasterization
Pixel
Processing

Graphics Processing (Unit)

Slide by Tomas Akenine-Möller

11Winter 2011 – Beyond Programmable Shading

Rasterization vs Ray Tracing

• Given that many of you have written a ray tracer but not a
rasterizer…

• A rasterization rendering pipeline can be thought of as a
special-purpose ray tracer that is highly optimized to only
trace rays that:

– Share a common origin

– Terminate at the first intersection

12Winter 2011 – Beyond Programmable Shading

• Rasterizer Ray tracer

Foreach triangle, t { Foreach pixel, p {

Foreach pixel that intersects t { Foreach triangle that intersects p {

… }} … }}

• Parallelization and optimizations are quite different

• The two are often combined in the same rendering

Rasterization vs Ray Tracing

13Winter 2011 – Beyond Programmable Shading

Rasterization – some definitions

• A “Pixel”

• Short for “picture” “element”

• Smallest visible unique element on a display

• But internally in the pipe, some elements could be smaller

• Rasterization

• Rasterization is the act of generating visible pixels from
primitives, through scan conversion, texturing, shading,
color blending, etc.

• Basically, to identify which pixels to “light up” and what they
look like

• A “raster”, or Latin’s rastrum, is a rake. This loosely translates to a
device that draws parallel lines, or a grid of squares – in our case,
pixels.

14Winter 2011 – Beyond Programmable Shading

Rasterization & Scan Conversion

• “Scan conversion” is the act of finding
which screen pixels belong to a given
primitive

• Rules of rasterization vary, with multiple
techniques and rules dependent on API,
algorithm

• The part of the primitive that is within
(totally or partially) a pixel is called a
“fragment”. It’s defined with a pixel and
a coverage

• Pixels are generally subdivided into a
grid, and sub-grid elements are
identified to be part of a primitive, and
the union is a fragment.

Akeley [4]

15Winter 2011 – Beyond Programmable Shading

Texturing
• Texturing is the act of taking an image and painting it onto primitives or object

surfaces.

• Texture “maps” are the sources images, and each picture element in the texture map
is called a “texel” (similar to pixel but on the source)

• A map is effectively a digital image with (nxm) picture elements, called “texture elements”

• The act of mapping must do a proper projection from texture space to pixel space

• Vertices are specified in both geometry and texture space

• Texture operations may occur in fragment/pixel processing stage, but also in vertex
processing (texture displacement of vertices)

Akeley [3]

Akeley [5]

16Winter 2011 – Beyond Programmable Shading

Lighting
• Realistic lighting must include the perception of light and all its effects

• Lighting may be computed per-vertex or per-pixel

• Note: OpenGL 1.x / DirectX1-7 only permitted per-vertex lighting

Akeley [9]

n
liq

dw

dA

iw
uv

r dA> >

cos idA q×

p = 1 p = 2 p = 4

p = 8 p = 16 p = 32

p = 64 p = 128 p = 256

Merrell [8]

17Winter 2011 – Beyond Programmable Shading

Hidden surface removal
• The goal of rendering is to build a mathematical model of a world in 3D, then draw

that world from the point of view of a single camera positioned arbitrarily

• Z-Buffering is a process of cutting out renderings that cannot be seen by the
viewpoint of the screen using a depth process – “Z” commonly is the depth parameter
to determine what shapes are in front or behind. There are other culling “tricks” used,
such as back face primitive removal and others.

• Z-Buffering deals with depth on a per pixel basis, and each pixel has a depth in a “Z”
buffer. This allows removal of hidden surfaces even when surfaces intersect.

Rendered virtual space What the screen will see

18Winter 2011 – Beyond Programmable Shading

The DirectX9 / OpenGL 2.x
Rasterization Pipeline

19Winter 2011 – Beyond Programmable Shading

What is a GPU?

• Traditional definition

– The Graphics Processing Unit is the hardware in a compute system that
is used to generate all the contents that will be displayed on a monitor

– This unit may come in many forms – from chipsets integrated into a
default motherboard configuration to “discrete” cards which are
dedicated higher-performance hardware for display driving.

– A typical computer system will have a GPU connected to the host
computer through an interface VGA/DVI/DP, and will be accompanied
by memory, often called “frame buffer”.

• Integrated CPU-GPU are changing this slightly

– GPU and CPU are now on same die and share parts of memory system

– Division of labor between CPU and GPU for rendering is changing

– (Intel Sandybridge and AMD Fusion)

20Winter 2011 – Beyond Programmable Shading

AMD GPU example HD4870, ca. 2008

(actually a DX10 GPU)

Fixed function
graphics HW

Compute cores

21Winter 2011 – Beyond Programmable Shading

NVIDIA GPU example (a DX10 GPU)

22Winter 2011 – Beyond Programmable Shading

A quick history 1960’s to 2000s
Good reference: http://hem.passagen.se/des/hocg/hocg_1960.htm

1960’s 1970’s 1980’s 1990’s

ISutherland,
Sketchpad,
1961

S Russel,
Spacewars,
1961

IBM2250,
1965

Odyssey,
Magnavox,
1966-8

U Utah,
1968

Hidden
surface
removal,
UU, 1969

Gouraud,
1971

Pong,
Atari, 1972

“Westworld”
PDG, 1973

Siggraph
ACM, 1973

Z, Texture,
Catmull,
1974

NYIT, 1974

Apple II,
Apple, 1977

Radiosity,
Cornell, 1984

REYES,
Lucas, 1981

RayTracing,
Whitted, 1980

SGI,
J. Clark, 1982

Wavefront,
1984

1st MAC wGUI,
Apple, 1984

Pixar,
Lucas, 1986

Renderman,
Pixar, 1988

Win 3.0 wGUI,
MS, 1990

Nintendo 64,
N, 1996

Quake,
ID, 1996

Voodoo3D,
3Dfx, 1997

TNT2/
GeF256
NV, 1999

ATI, 1985AMD, 1969 ArtX, 1997

Playstation,
Sony, 1995

Reality Engine,
SGI, 1993

OpenGL 1.0, SGI, 1991

E&S, 1968 Lucas CGD,
1979Intel, 1968

TRON, Disney
3I, MAGI,
NYIT, 1980

Toy Story,
Pixar, 1992

23Winter 2011 – Beyond Programmable Shading

A quick history since 2000

2000-02 2003-5 2006-7 2008-9

ArtX1,
1st integrated
TL, 2000

R4xx ATI,
2004

R6xx,
ATI, 2006

DX 10.1,
MS, 2007

DX11/Win7
MS, 2009

OpenCL 1.0,
Khronos, 2008

OpenGL 3.0,
Khronos, 2008

NV acquires
3dfx, 2000

Gamecube
N, 2001

Xbox
MS, 2001

LoftR/2Towers,
WETA, 2002

ArtX acquired
ATI, 2000

NV4x
NV, 2004

DOOM3,
ID, 2004

Half-Life2,
Valve, 2004

Xbox 360,
MS, 2005

X3/600, 1st PCIe
ATI, 2004

SLI/Xfire
ATI/NV, 2005

SGI bankrupcy
protection, 2005

R5xx ATI,
2005

G8x,
NV, 2006

CUDA,
NV, 2007

Vista/DX10,
MS, 2006

PS3,
Sony, 2006

Wii,
N, 2006

R7xx,
AMD, 2008

R670/x35,
AMD, 2007

G2xx,
NV, 2008

Evergreen,
AMD, 2009

VIA acquires
S3, 2000

Larrabee
announcement
Intel, 2008

Alias sold
SGI, 2004

ATI acquired
AMD, 2006

SGI,
Purchased, 2009

Crysis-WH,
Crytek, 2008

DX9
MS, 2002

R300
ATI, 2002

24Winter 2011 – Beyond Programmable Shading

General Rasterization Pipeline

• Geometry processing:

– Transforms geometry, generates more geometry, computes per-vertex
attributes

• Rasterization:

– Sets up a primitive (e.g., triangle), and finds all samples inside the
primitive

• Pixel processing

– Interpolates vertex attributes, and computes pixel color

Application
Geometry
Processing

Rasterization
Pixel
Processing

Graphics Processing (Unit)

Slide by Tomas Akenine-Möller

25Winter 2011 – Beyond Programmable Shading

DX9

Vertex Shader

Input Assembler

Rasterization

Pixel Shader

Output Merger

Index buffer

Vertex Buffer

Texture

Depth/Stencil

Render Target

Memory

Slide by Tomas Akenine-Möller

26Winter 2011 – Beyond Programmable Shading

Input Assembler

Input Assembler
Index buffer

Vertex Buffer

Memory

• Main task is to read from memory:

– Indices

– Vertex attributes (xyz-coordinates, normals, texture coords, etc)

• Then form primitives (triangles, lines, points)

• Send down the pipeline

Slide by Tomas Akenine-Möller

27Winter 2011 – Beyond Programmable Shading

Vertex Shader

Vertex Shader

Input Assembler
Index buffer

Vertex Buffer

Memory

• User-supplied vertex shader program is executed once per
vertex

• Examples:

– Vertex transformations (e.g., skinning)

– Normal/Tangent space transformations

– Clip-space transformations

– Texture coordinates computations (e.g., animation)

• Really up to the programmer:

– He/she knows what interpolated attributes are needed in the pixel shader

Slide by Tomas Akenine-Möller

28Winter 2011 – Beyond Programmable Shading

Rasterization

Vertex Shader

Input Assembler

Rasterization

• Given projected vertices of a triangle:

– find samples (one or more per pixel) that are
inside the triangle

Slide by Tomas Akenine-Möller

29Winter 2011 – Beyond Programmable Shading

Scanline Rasterization

Slide by Tomas Akenine-Möller

30Winter 2011 – Beyond Programmable Shading

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

Hierarchical Rasterization

• Some variant of hierarchical rasterization is used in most
real-time renderers

–Better cache-coherence and enables z-cull, buffer
compression, and exploits regularity in the problem

Slide by Tomas Akenine-Möller

31Winter 2011 – Beyond Programmable Shading

Pixel Shader

Vertex Shader

Input Assembler

Rasterization

Pixel Shader Texture

Memory

• Execute a user-supplied pixel shader
program

• Task: compute pixel’s color

– - BRDF, lighting, …

Slide by Tomas Akenine-Möller

32Winter 2011 – Beyond Programmable Shading

Output Merger

Vertex Shader

Input Assembler

Rasterization

Pixel Shader

Output Merger
Depth/Stencil

Render Target

Memory

• “Merge” output from PS with frame buffer
(depth/stencil/color...)

– Depth testing (could be done earlier too)

– Stencil testing

– Color blending

– ...and more

• Sometimes called ROP =Raster Operations

Slide by Tomas Akenine-Möller

33Winter 2011 – Beyond Programmable Shading

Additional Details

• Briefly about the following “standard” techniques:

– Z-buffering (also called depth buffering)

– Screen-Space Anti-Aliasing (e.g., MSAA, CSAA)

– Texturing and mip-mapping

– Z-culling

Slide by Tomas Akenine-Möller

34Winter 2011 – Beyond Programmable Shading

Z-buffering

35Winter 2011 – Beyond Programmable Shading

Z-buffering (1)

•The graphics hardware ”just” draws
triangles

•A triangle that is covered by a more
closely located triangle should not be
visible

•Assume two equally large triangles at
different depths

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

Slide by Tomas Akenine-Möller

36Winter 2011 – Beyond Programmable Shading
3
6

• We need sorting per pixel

• The Z-buffer (aka depth buffer) solves this

• Idea:

– Store z (depth) at each pixel

– When rasterizing a triangle, compute z at each pixel on triangle

– Compare triangle’s z to Z-buffer z-value

– If triangle’s z is smaller, then replace Z-buffer and color buffer

– Else do nothing

• Z-buffer characteristics

– Render geometry in any order

– Use fixed/bounded memory

– Generates correct visibility result for first depth layer

Z-buffering (2)

Slide by Tomas Akenine-Möller

37Winter 2011 – Beyond Programmable Shading

Z-culling

38Winter 2011 – Beyond Programmable Shading

Z-culling
(also called Hierarhical Depth Culling)

• Texture caching and texture compression as good ways of
reducing usage of texture bandwidth

• What else can be done?

39Winter 2011 – Beyond Programmable Shading

Z-Culling (aka Hierarchical Depth
Culling)

•Small triangle is behind big triangle

•If this can be detected, we can:

– reduce depth buffer accesses

– reduce pixel shader executions

•Commonly used technique in GPUs

40Winter 2011 – Beyond Programmable Shading

Screen-Space Anti-Aliasing
(including MSAA/CSAA)

Slide by Tomas Akenine-Möller

41Winter 2011 – Beyond Programmable Shading

Screen-space Anti-Aliasing

• For better image quality, more sampling per pixel is needed

• For real-time graphics, multi-sampling AA (MSAA) is often
used

• [Naiman1998] showed that near-horizontal/vertical edges are
in most need of improvement for humans

1x 8x

Slide by Tomas Akenine-Möller

42Winter 2011 – Beyond Programmable Shading

Screen-space
Anti-Aliasing
• One sample per pixel is not enough

• Hard case:

– An edge has infinite frequency content

– Means no sample rate can fix this for us...

• Multi/Supersampling techniques: use more samples

NOTE: frame buffer

needs to be 4x as big!

Slide by Tomas Akenine-Möller

43Winter 2011 – Beyond Programmable Shading

A single sample per pixel

Slide by Tomas Akenine-Möller

44Winter 2011 – Beyond Programmable Shading

4 samples per pixel
Rotated Grid Supersampling (RGSS)

Slide by Tomas Akenine-Möller

45Winter 2011 – Beyond Programmable Shading

Multi-Sampling Anti-Aliasing
(MSAA)
• Observation: the most important thing to anti-alias are the
edges, and not pixel shading

– Plus: pixel shading is expensive

• The MSAA approach:

– Increase geometrical sampling

– Sample inside/outside triangle several times per pixel

– But sample pixel shading only once

Sample pixel shading in the middle

Sample inside/outside triangle
several times

4x MSAA required by DX10.1

Slide by Tomas Akenine-Möller

46Winter 2011 – Beyond Programmable Shading

Take another look at those images...

• It is really the edges that are in most need of improvement...

• MSAA handles that quite well

1x 8x

Slide by Tomas Akenine-Möller

47Winter 2011 – Beyond Programmable Shading

Coverage Sample Anti-Aliasing
(CSAA)
• “Coverage” means inside or outside a triangle

• Decouples coverage from color/Z/stencil

– Higher sampling rate for coverage than color

• Per-pixel has a palette of colors

– Each sample picks a color from a palette

Slide by Tomas Akenine-Möller

48Winter 2011 – Beyond Programmable Shading

Coverage Sampling AntiAliasing
(CSAA)
• Pros

– Lower memory bandwidth usage

– Low performance overhead

– Only additional rasterization tests needed

– Do not need to Z/Stencil test per coverage sample

• Cons

– Incorrect if > 4 surfaces are visible through a pixel

– A form of lossy compression

Slide by Tomas Akenine-Möller

49Winter 2011 – Beyond Programmable Shading

CSAA vs MSAA

No AA 4x MSAA CSAA
16x coverage
4x color

Slide by Tomas Akenine-Möller

50Winter 2011 – Beyond Programmable Shading

Texturing

51Winter 2011 – Beyond Programmable Shading

Texturing

Image from “Lpics” paper by Pellacini et al.
SIGGRAPH 2005, Pixar Animation Studios

• Surprisingly simple technique

– Extremely powerful, especially with programmable shaders

– Simplest form: “glue” images onto surfaces (or lines or points)

52Winter 2011 – Beyond Programmable Shading © 2005 Tomas Akenine-Möller

Texture space, (s,t)

•Texture resolution, often 2a x 2b texels

•The ck are texture coordinates, and belong to a
triangle’s vertices

•When rasterizing a triangle, we get (u,v)
interpolation parameters for each pixel (x,y):

–Thus the texture coords at (x,y) are:

(u,v)

(s,t)

53Winter 2011 – Beyond Programmable Shading © 2005 Tomas Akenine-Möller

54Winter 2011 – Beyond Programmable Shading
© 2005 Tomas Akenine-Möller

Texture magnification (1)

• Middle: nearest neighbor – just pick nearest texel

• Right: bilinear filtering: use the four closest texels, and
weight them according to actual sampling point

55Winter 2011 – Beyond Programmable Shading
© 2005 Tomas Akenine-Möller

•Bilinear filtering is simply, linear filtering in
x:

Texture magnification (2)

t00 t10

t11t01

• Followed by linear filtering in y:

56Winter 2011 – Beyond Programmable Shading

57Winter 2011 – Beyond Programmable Shading © 2005 Tomas Akenine-Möller

58Winter 2011 – Beyond Programmable Shading © 2005 Tomas Akenine-Möller

Trilinear Mipmapping (1)

• Basic idea:

– Approximate (dark gray footprint) with square

– Then we can use texels in mipmap pyramid

59Winter 2011 – Beyond Programmable Shading © 2005 Tomas Akenine-Möller

Trilinear mipmapping (2)

•Compute d, and then use two closest mipmap
levels

–In example above, level 1 & 2

•Bilinear filtering in each level, and then linear
blend between these colors trilinear
interpolation

•Nice bonus: makes for much better texture cache
usage

60Winter 2011 – Beyond Programmable Shading

Wrap-Up

• The 2003 real-time rendering pipeline supports

• Programmable vertex shaders (100s of instructions)

• Programmable fragments shaders (100s of instructions with limited control
flow)

• This is the technology in the current game console generations
(Microsoft XBox360 and Sony PlayStation 3)

• These APIs spurred a large amount of innovation in rendering
and GPU computing (it was the generation before GPU
compute languages)

61Winter 2011 – Beyond Programmable Shading

Questions?

• Next lecture:

– The 2011 real-time rendering pipeline (DirectX11)

62Winter 2011 – Beyond Programmable Shading

Some references
Books

Foley / van Dam – Computer graphics: Principles and Practices / Introduction to computer graphics

“Real-Time Rendering” textbook by Tomas Akenine-Moller, Haines, and Hoffman

Courses

• Kurt Akeley’s Stanford course slides, co-founder of SGI, from which this lecture borrows liberally

• http://graphics.stanford.edu/courses/

• The University of North Carolina at Chapel Hill has another superb department of graphical research
and well documented Introduction to Graphics from which this lecture also shamelessly borrows

• http://www.cs.unc.edu/~pmerrell/comp575.htm

• Illinois also has a graphical programming course taught by experts, though material is heavily
infiltrated by NVidia marketing and CUDA (general purpose/non-graphical GPU) models

• http://courses.ece.illinois.edu/ece498/al/Syllabus.html

Conferences – ACM SIGGRAPH, High Performance Graphics, GDC, EUROGRAPHICS

Chris Thomas’ Java 3D applets for beginning graphic programmers (cool switches to play with on basic
concepts with immediate visual feedback) http://ctho.ath.cx/toys/3d.html

http://graphics.stanford.edu/courses/
http://www.cs.unc.edu/~pmerrell/comp575.htm
http://courses.ece.illinois.edu/ece498/al/Syllabus.html
http://ctho.ath.cx/toys/3d.html

63Winter 2011 – Beyond Programmable Shading

References 1
Vertices and Primitives

[1] Kurt Akeley, “Open GL”, Stanford, Lecture 2, http://graphics.stanford.edu/courses/cs248-07/

[2] David Blythe, “Direct3D 10”, SIGGRAPH 2006, http://www.cs.umbc.edu/~olano/s2006c03/ch02.pdf

[3] Kurty Akeley, Pat Hanrahan, “The Graphics Pipeline”, Stanford, Lecture 2 http://graphics.stanford.edu/cs448-07-
spring/

Transformations

– Kurt Akeley, “2-D Transformations”, Stanford, Lecture 7 http://graphics.stanford.edu/courses/cs248-07/

– Kurt Akeley “3-D Transformations”, Stanford, Lecture 8 http://graphics.stanford.edu/courses/cs248-07/

– MSDN, “3-D Transformations Overview”, Microsoft http://msdn.microsoft.com/en-us/library/ms753347.aspx

Z-Buffering

– Kurt Akeley, “Z-Buffer”, Stanford, Lecture 13 http://graphics.stanford.edu/courses/cs248-07/

– Steven Molnar, “Combining Z-buffer Engines for Higher-Speed Rendering”, EUROGRAPHIC 1988, pp171-182,
http://www.cs.unc.edu/~molnar/Papers/ZComp-hwws88.pdf

– Stewart, Leach, John, “An Improved Z-Buffer CSG Rendering Algorithm”, EUROGRAPH/SIGGRAPH 1998
http://www.nigels.com/research/egsggh98.pdf

– Greene, Kass, Miller, “Hierarchical Z-Buffer Visibility”, SIGGRAPH 1993
www.cs.princeton.edu/courses/archive/spring01/cs598b/papers/greene93.pdf

http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://www.cs.umbc.edu/~olano/s2006c03/ch02.pdf
http://graphics.stanford.edu/cs448-07-spring/
http://graphics.stanford.edu/cs448-07-spring/
http://graphics.stanford.edu/cs448-07-spring/
http://graphics.stanford.edu/cs448-07-spring/
http://graphics.stanford.edu/cs448-07-spring/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://msdn.microsoft.com/en-us/library/ms753347.aspx
http://msdn.microsoft.com/en-us/library/ms753347.aspx
http://msdn.microsoft.com/en-us/library/ms753347.aspx
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://graphics.stanford.edu/courses/cs248-07/
http://www.cs.unc.edu/~molnar/Papers/ZComp-hwws88.pdf
http://www.cs.unc.edu/~molnar/Papers/ZComp-hwws88.pdf
http://www.cs.unc.edu/~molnar/Papers/ZComp-hwws88.pdf
http://www.nigels.com/research/egsggh98.pdf
http://www.cs.princeton.edu/courses/archive/spring01/cs598b/papers/greene93.pdf

64Winter 2011 – Beyond Programmable Shading

References 2
Rasterization

[4] Kurt Akeley, “Rasterization”, Stanford, Lecture 5 http://graphics.stanford.edu/courses/cs248-07

– Fredo Durand and Barb Cutler, “Rasterization”, MIT, EECS 6.837 Lecture 15,
http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/15%20Raster.pdf

– Crisu, Cotofana, Vassiliadis, Liuha, “Efficient hardware for Tile-Based Rasterization” ProRISC 2004,
http://ce.et.tudelft.nl/publicationfiles/964_12_crisu_prorisc2004.pdf

Textures

[5] Kurt Akeley, “Texture Mapping”, Stanford, Lecture 10 http://graphics.stanford.edu/courses/cs248-07

[6] Paul Merrell, “Texture Synthesis”, Nov 6, 2008 http://www.cs.unc.edu/~pmerrell/comp575.htm

– Eckstein, Surazhsky, Gotsman, “Texture Mapping with Hard Constraints”, EUROGRAPHICS 2001,
http://www.cs.technion.ac.il/~gotsman/AmendedPubl/TextureMapping/TextureMapping.pdf

– “Texture Mapping”, SIGGRAPH.org, http://www.siggraph.org/education/materials/HyperGraph/mapping/texture0.htm

– Daniel Pinkwater, “The Hoboken Chicken Emergency” http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-
Pinkwater/dp/0689828896

http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/15 Raster.pdf
http://ce.et.tudelft.nl/publicationfiles/964_12_crisu_prorisc2004.pdf
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://www.cs.unc.edu/~pmerrell/comp575.htm
http://www.cs.technion.ac.il/~gotsman/AmendedPubl/TextureMapping/TextureMapping.pdf
http://www.siggraph.org/education/materials/HyperGraph/mapping/texture0.htm
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896
http://www.amazon.com/Hoboken-Chicken-Emergency-Daniel-Pinkwater/dp/0689828896

65Winter 2011 – Beyond Programmable Shading

References 3
Anti-Aliasing

[7] Kurt Akeley, “Multisample Antialiasing”, Stanford, Lecture 6 http://graphics.stanford.edu/courses/cs248-07

– Kurt Akeley, “Pre-Filter Antialiasing”, Stanford, Lecture 4 http://graphics.stanford.edu/courses/cs248-07

– Kurt Akeley, “Sampling and Aliasing”, Stanford, Lecture 3 http://graphics.stanford.edu/courses/cs248-07

– Open GL multisample specs http://www.opengl.org/registry/specs/ARB/multisample.txt
http://www.opengl.org/registry/specs/SGIS/multisample.txt

– “AntiAliasing Techniques” SIGGRAPH.org, http://www.siggraph.org/education/materials/HyperGraph/aliasing/alias0.htm

Lighting

[8] Paul Merrell, “Shading”, Sept 25, 2008 http://www.cs.unc.edu/~pmerrell/comp575.htm

[9] Kurt Akeley, “Illumination and Direct Reflection”, Stanford, Lecture 12 http://graphics.stanford.edu/courses/cs248-07

– Stokes, Ferwerda, Walter, Greeenberg, “Perceptual Illumination Components: A New Approach to Efficient, high Quality
Global Illumination Rendering”, SIGGRAPH 2004, http://www.cis.rit.edu/jaf/publications/PICS_SIGGRAPH2004.pdf

– Cabral, Orlano, Nemen, “Reflection Space Image-Based Rendering”, SIGGRAPH 1999
https://eprints.kfupm.edu.sa/61732/1/61732.pdf

http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://www.opengl.org/registry/specs/ARB/multisample.txt
http://www.opengl.org/registry/specs/SGIS/multisample.txt
http://www.siggraph.org/education/materials/HyperGraph/aliasing/alias0.htm
http://www.cs.unc.edu/~pmerrell/comp575.htm
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://graphics.stanford.edu/courses/cs248-07
http://www.cis.rit.edu/jaf/publications/PICS_SIGGRAPH2004.pdf
https://eprints.kfupm.edu.sa/61732/1/61732.pdf

66Winter 2011 – Beyond Programmable Shading

References 4
Low-Level APIs

– MSDN, “HLSL”, Microsoft Corp, http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx

– OpenGL, “OpenGL & OpenGL Utility Specifications”, OpenGL.org http://www.opengl.org/documentation/specs/

– Khronos, “OpenCL”, Khronos Group http://www.khronos.org/opencl/

– R600-Technology, “R600-Family Instruction Set Architecture”, AMD corp, http://www.x.org/docs/AMD/r600isa.pdf

ATI Hardware

[10] Anadtech, “The Radeon HD 4850 & 4870”, http://www.anandtech.com/video/showdoc.aspx?i=3341&p=1

– ATI developer publications http://ati.amd.com/developer/techreports.html

– AMD main site http://www.amd.com/us-en/

– Beyond3D, “Sir Eric Demers on AMDR600,” http://www.beyond3d.com/content/interviews/39/

– R.K. Montoye, E. Hokenek and S.L. Runyon, “Design of the IBM RISC System/6000 floating-point execution unit,” IBM
Journal of Research & Development, Vol. 34, pp. 59-70, 1990.

– Pics etc may be google’d with ease

http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx
http://www.opengl.org/documentation/specs/
http://www.khronos.org/opencl/
http://www.x.org/docs/AMD/r600isa.pdf
http://www.anandtech.com/video/showdoc.aspx?i=3341&p=1
http://ati.amd.com/developer/techreports.html
http://www.amd.com/us-en/
http://www.amd.com/us-en/
http://www.amd.com/us-en/
http://www.beyond3d.com/content/interviews/39/

