
1Winter 2011 – Beyond Programmable Shading

Rasterization Rendering Effects Review
Aaron Lefohn, Intel / University of Washington

Mike Houston, AMD / Stanford



2Winter 2011 – Beyond Programmable Shading

Overview

• Surface shaders

• Light shaders

– Shadow maps

• Reflections

– Planar reflections

– Environment maps

• [z,w,g,a,k,f,n]-buffer review

• Billboards

– Hair, foliage, smoke, etc.



3Winter 2011 – Beyond Programmable Shading

Approach for This Lecture

• Since many of you are more familiar with ray tracing than 
rasterization…

• This lecture describes how basic material, illumination, and 
visibility problems are solved in real-time rasterization-based 
renderers (compared to how they are solved in a simple ray 
tracer)



4Winter 2011 – Beyond Programmable Shading

Surface Properties
(Surface shaders)



5Winter 2011 – Beyond Programmable Shading

Surface Shaders

• In ray tracing

– Your “materials” class defines the BRDF and provides the surface 
properties to the BRDF such as diffuse color, specularity, etc.

• In rasterization

– A batch of primitives with the same “material” are rendered at the same 
time

– “Material class” implemented in pixel shader



6Winter 2011 – Beyond Programmable Shading

Direct Illumination
(Light shaders)



7Winter 2011 – Beyond Programmable Shading

Direct Illumination

• In ray tracing

– “At a ray-surface intersection, trace rays to all lights and combine with 
BRDF to compute final color”

• In rasterization

– Query visibility data computed in pre-pass for each light (pixel shader)
E.g., shadow mapping

– Combine lighting result with BRDF to compute final color (pixel shader)



8Winter 2011 – Beyond Programmable Shading

Shadow Mapping



9Winter 2011 – Beyond Programmable Shading
9

The Shadowing Problem

??



10Winter 2011 – Beyond Programmable Shading
10

The Shadowing Problem



11Winter 2011 – Beyond Programmable Shading
11

The Shadowing Problem



12Winter 2011 – Beyond Programmable Shading

Shadow Mapping

•Render depth image from light position

•Shadow lookup

–Transform eye samples to shadow map

–If shadow map value closer to light, pixel in shadow

< ?

Williams
SIGGRAPH 1978



13Winter 2011 – Beyond Programmable Shading

Projective Aliasing

•Occluder normal nearly orthogonal to light 
rays

20482 Standard Shadow Map 32,7682 Resolution Matched Shadow Map



14Winter 2011 – Beyond Programmable Shading

Perspective Aliasing

• Mismatch between sampling distribution of eye-space samples 
and shadow samples



15Winter 2011 – Beyond Programmable Shading

Light Space Sample Distribution 
(Shadow Rays)
• Samples colored; yellow = denser samples



16Winter 2011 – Beyond Programmable Shading

Naïve Shadow Mapping

• Wastes lots of space that is never sampled



17Winter 2011 – Beyond Programmable Shading

Naïve Shadow Mapping

• Perspective aliasing near the camera



18Winter 2011 – Beyond Programmable Shading

Naïve Shadow Mapping

• Projective aliasing on surfaces aligned with light rays



19Winter 2011 – Beyond Programmable Shading

Shadow Map Techniques

• Hundreds of shadow map papers address perspective, projective, 
and depth representation aliasing. For example:

– Perspective shadow maps (and many follow-up ideas)

–Warp shadow map to match receiver samples)

– Adaptive quadtree shadow maps

–Generate hundreds of small shadow maps at the correct resolution to match receivers

– Cascaded shadow maps (“Z-Partitioning”)

–Render small number of shadow maps (~2-4) that split eye-space view frustum so 
each shadow map covers a smaller depth range and is therefore a better fit for the 
receivers in that partition

– (and the list goes on, and on, and on)

• The only approaches that directly address both perspective and 
projective aliasing are

– Irregular rasterization

–Adaptive grid-based methods



20Winter 2011 – Beyond Programmable Shading

Z-Partitioning

• Split camera frustum in Z

• Use a different shadow map for each frustum partition



21Winter 2011 – Beyond Programmable Shading

Z-Partitioning



22Winter 2011 – Beyond Programmable Shading

Z-Partitioning

Scene from Left 4 Dead 2, courtesy of Valve Corporation



23Winter 2011 – Beyond Programmable Shading

Z-Partitioning

Scene from Left 4 Dead 2, courtesy of Valve Corporation



24Winter 2011 – Beyond Programmable Shading

Z-Partitioning in Light Space



25Winter 2011 – Beyond Programmable Shading

Z-Partitioning Light Space Partitions



26Winter 2011 – Beyond Programmable Shading

Reflections



27Winter 2011 – Beyond Programmable Shading

Planar Reflections

• Ray tracing

– “When hit specular surface, shoot new ray in direction determined by 
sampling specular lobe of BRDF”

• Rasterization

– If planar surface (e.g., rear-view mirror in car), render image from back 
side of surface, clipped by bounding box of planar model (pre-pass)

– In final rendering pass, query reflected-surface texture (pixel shader)



28Winter 2011 – Beyond Programmable Shading

Reflections from Arbitrary Surfaces 

• Ray tracing

– “When hit specular surface, shoot new ray in direction determined by 
sampling specular lobe of BRDF”

• Rasterization

– Render environment map (cube, dual paraboloid, etc) in pre-pass

– In final rendering pass, query environment map based on reflected ray 
direction



29Winter 2011 – Beyond Programmable Shading

Graphics *-Buffer Glossary



30Winter 2011 – Beyond Programmable Shading

Overview

• Single depth layer

– Z buffer

– W bufffer

– G buffer

• Multiple depth layers

– A buffer

– K buffer

– F buffer



31Winter 2011 – Beyond Programmable Shading

Z-Buffer (aka “Depth Buffer”)

• Purpose

– “Render geometry in any order and capture front-most depth layer”

• Key Attributes

– Fixed memory regardless of amount of geometry

– Accelerated in all current GPUs



32Winter 2011 – Beyond Programmable Shading

W-Buffer

• Purpose

– “Just like z-buffer but store depth in eye space (linear) rather than post-
projective screen space.”

• Key Attributes

– Similar storage to z-buffer (but always floating point)

– Different precision distribution across depth range



33Winter 2011 – Beyond Programmable Shading

G-Buffer

• Purpose

– Deferred rendering

– “Render to an image-space buffer that captures per-pixel surface 
information such that the lighting can be computed in a post-processing 
image-space computation pass”

• Key Attributes

– Fixed memory requirements

– Decouples geometry from lighting



34Winter 2011 – Beyond Programmable Shading

A-Buffer

• Purpose

– “Render translucent and opaque geometry in any order, capture all depth 
layers, and resolve to final image”

– Also capture per-sample coverage information for anti-aliasing

• Key Attributes

– Unbounded memory requirements

– Used in REYES / RenderMan



35Winter 2011 – Beyond Programmable Shading

K-Buffer

• Purpose

– “Render geometry that will generate fragments that are no more than k 
out of order, and use k-buffer to do final streaming sort”

• Key Attributes

– Fixed memory requirements

– Requires read-modify-write operations on framebuffer or custom blending 
logic



36Winter 2011 – Beyond Programmable Shading

F-Buffer

• Purpose

– “Capture all rendered fragments in a linear output stream”

• Key Attributes

– Unbounded memory requirements

– Indexed by re-rendering geometry

– Does not support random indexing by pixel position without sorting entire 
f-buffer

– (Much like geometry shader’s “stream out”)



37Winter 2011 – Beyond Programmable Shading

N-Buffer

• Purpose

– Pre-blurred images that don’t suffer from down-sampling artifacts

• Key Attributes

– Recursively blurred stack of images that are all the same size

– Like mipmaps, but with no down-sampling

– Takes huge amount of memory unless image size is small



38Winter 2011 – Beyond Programmable Shading

Billboards

• Fine geometry (sub-pixel) and volumetric media are usually 
handled with “billboards”

– A “billboard” is a camera-aligned, texture-mapped, partially transparent 
quad

– Used for hair, fences, smoke, foliage, grass, …

– No depth test. Alpha blending. Must render billboards in depth order.



39Winter 2011 – Beyond Programmable Shading

Billboards



40Winter 2011 – Beyond Programmable Shading

Summary

• Many of the illumination and surface material effects 
supported in ray tracing or REYES can be implemented in the 
current programmable shading pipeline

– Often involves a pre-pass to cache non-local visibility

– These caches almost always introduce artifacts, but greatly speed up 
rendering

• Boundaries between rasterization and ray tracing are blurring

– (Limited) ray tracing in pixel shaders is increasingly common

– Ray tracing framebuffers is common

– Rasterization is highly-optimized special-case ray tracing



41Winter 2011 – Beyond Programmable Shading

Homework 1

• Will be on the web page this evening

• Due Monday, 1/24 (1.5 weeks)

• Join the class mailing list to get help from me and support 
each other with logistics/systems problems



42Winter 2011 – Beyond Programmable Shading

Backup



43Winter 2011 – Beyond Programmable Shading

Sample Distribution Shadow Maps
Slides by Andrew Lauritzen, Intel



44Winter 2011 – Beyond Programmable Shading

Sample Distribution Shadow Maps

• Needs of real-time applications

– Real-time applications need to constrain memory and time: “Authorable
performance”

– RMSM and IZB guarantee quality but vary time/memory

• SDSM idea

– “What is the best shadow quality we can deliver using a fixed amount of 
memory and time?”

– Automatically place a fixed number of shadow map partitions based on 
shadow receiver samples (same input as IZB and RMSM but different 
optimization)

• Addresses perspective aliasing directly and projective aliasing 
“when we get lucky”



45Winter 2011 – Beyond Programmable Shading

Z-Partitioning

• Split camera frustum in Z

• Use a different shadow map for each frustum partition



46Winter 2011 – Beyond Programmable Shading

Z-Partitioning



47Winter 2011 – Beyond Programmable Shading

Where to Partition Z?

• Logarithmic is the best [Lloyd et al. 2006]

– But only if the entire Z range is covered!

– Needs tight near/far planes

• Parallel-Split Shadow Maps [Zhang et al. 2006]

– Mix of logarithmic and uniform

– Requires user to tuneable a parameter

– Optimal value related to tight near plane…

• In practice, artists tune for specific views

– Tedious and not robust to scene/camera changes

– Ultimately suboptimal for arbitrary views



48Winter 2011 – Beyond Programmable Shading

Where to place shadow maps?

• Axis-aligned bounding box of frustum segment in light

• Does not consider vast segments of the shadow map that are 
occluded



49Winter 2011 – Beyond Programmable Shading

Static Partitions (PSSM)

Too little resolution far!

Too little resolution close!



50Winter 2011 – Beyond Programmable Shading

Sample Distribution Shadow Maps

• Analyze the light-space sample distribution

– Find tight Z min/max

– Partition logarithmically based on tight Z bounds

– Fully automatic; adapts to view with no need for tuning

• Compute tight light space bounds for each partition

– Min/max of sample coordinates in light space

– Avoids including occluded samples in shadow map

– Greatly increases useful shadow resolution



51Winter 2011 – Beyond Programmable Shading

Example: PSSM

Scene from Left 4 Dead 2, courtesy of Valve Corporation



52Winter 2011 – Beyond Programmable Shading

Example: PSSM Partitions

Scene from Left 4 Dead 2, courtesy of Valve Corporation



53Winter 2011 – Beyond Programmable Shading

Example: PSSM Light Space



54Winter 2011 – Beyond Programmable Shading

Example: PSSM Light Space Partitions



55Winter 2011 – Beyond Programmable Shading

Example: SDSM

Scene from Left 4 Dead 2, courtesy of Valve Corporation



56Winter 2011 – Beyond Programmable Shading

Example: SDSM Partitions

Scene from Left 4 Dead 2, courtesy of Valve Corporation



57Winter 2011 – Beyond Programmable Shading

Example: SDSM Light Space



58Winter 2011 – Beyond Programmable Shading

Example: SDSM Light Space Partitions


