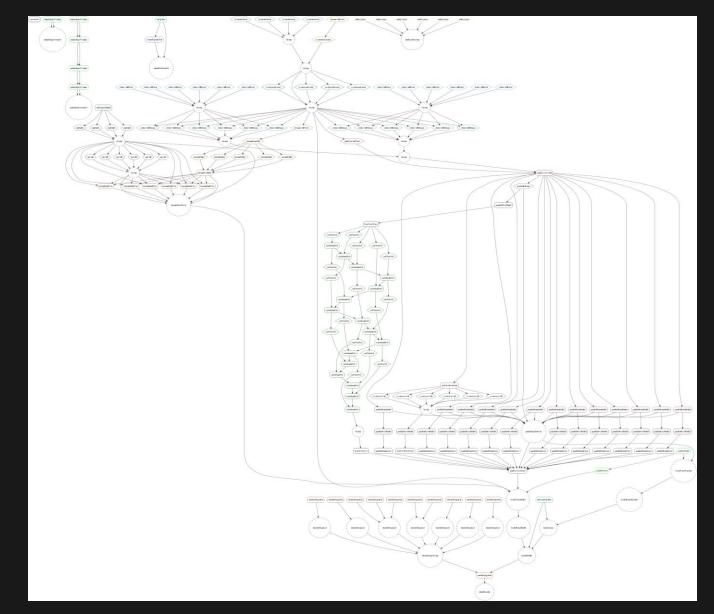
Introduction to Parallel Programming For Real-Time Graphics (CPU + GPU)

Aaron Lefohn, Intel / University of Washington Mike Houston, AMD / Stanford

What's In This Talk?

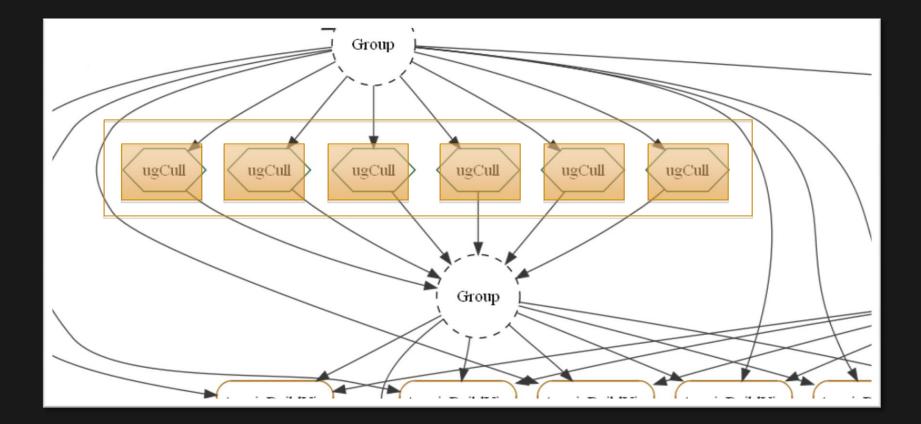
- Overview of parallel programming models used in real-time graphics products and research
 - Abstraction, execution, synchronization
 - Shaders, task systems, conventional threads, graphics pipeline, "GPU" compute languages
- Parallel programming models
 - Vertex shaders
 - Conventional thread programming
 - Task systems
 - Graphics pipeline
 - GPU compute languages (ComputeShader, OpenCL, CUDA)
- Discuss
 - Strengths/weaknesses of different models
 - How each model maps to the architectures

What Goes into a Game Frame? (2 years ago)

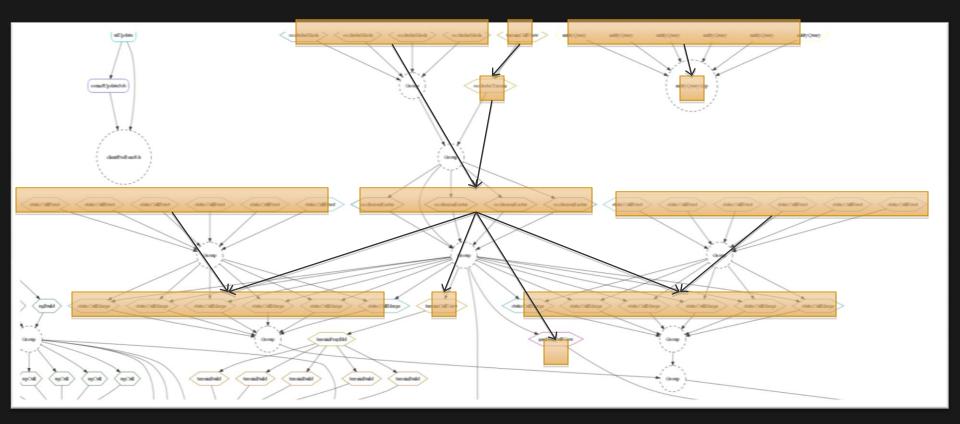


Computation graph for *Battlefied: Bad Company* provided by DICE

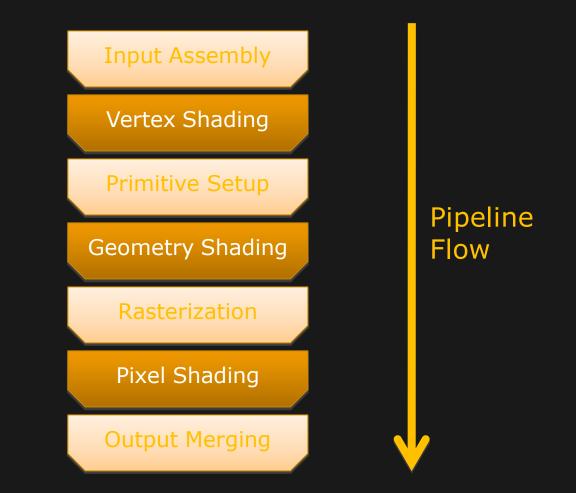
Data Parallelism



Task Parallelism



Graphics Pipelines



Remember: "Our Enthusiast Chip"

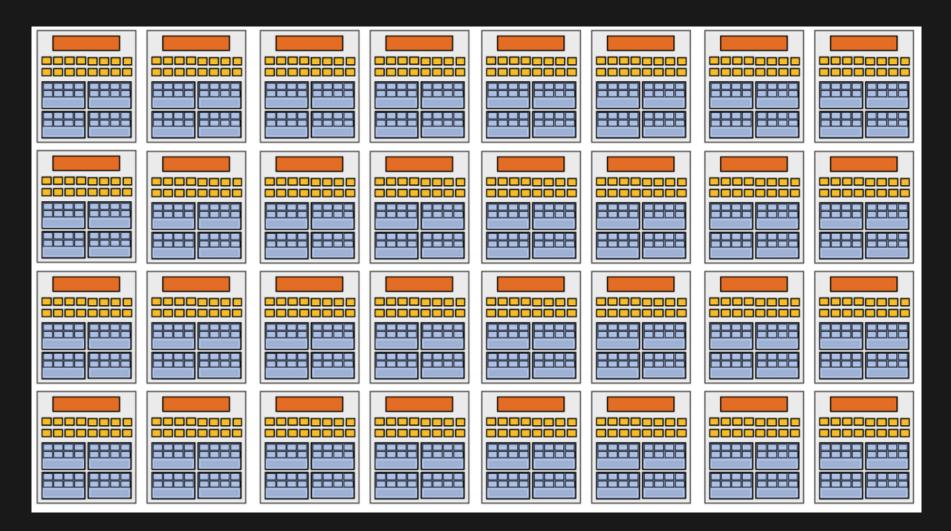


Figure by Kayvon Fatahalian

Hardware Resources (from Kayvon's Talk)

- Core
- Execution Context
- SIMD functional units
- On-chip memory

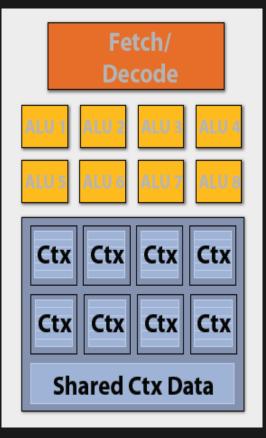


Figure by Kayvon Fatahalian

Abstraction

Abstraction enables portability and system optimization

- E.g., dynamic load balancing, producer-consumer, SIMD utilization
- Lack of abstraction enables arch-specific user optimization
 - E.g., multiple execution contexts jointly building on-chip data structure

• Remember:

 When a parallel programming model abstracts a HW resource, code written in that programming model scales across architectures with varying amounts of that resource

Definitions: Execution

• Task

 A logically related set of instructions executed in a single execution context (aka shader, instance of a kernel, task)

Concurrent execution

 Multiple tasks that <u>may</u> execute simultaneously (because they are logically independent)

• Parallel execution

 Multiple tasks whose execution contexts are guaranteed to be live simultaneously (because you want them to be for locality, synchronization, etc)

Synchronization

- Synchronization
 - Restricting when tasks are permitted to execute
- Granularity of permitted synchronization determines at which granularity system allows user to control scheduling

Vertex Shaders: "Pure Data Parallelism"

• Execution

- Concurrent execution of identical per-vertex tasks
- What is abstracted?
 - Cores, execution contexts, SIMD functional units, memory hierarchy
- What synchronization is allowed?
 - Between draw calls

Shader (Data-parallel) Pseudocode

```
concurrent_for( i = 0 to numVertices - 1)
{
    ... execute vertex shader ...
}
```

- SPMD = Single Program Multiple Data
 - This type of programming is sometimes called SPMD
 - Instance the same program multiple times and run on different data
 - Many names: shader-style, kernel-style, SPMD

Conventional Thread Parallelism (e.g., pthreads)

- Execution
 - Parallel execution of N tasks with N execution contexts
- What is abstracted?
 - Nothing (ignoring preemption)
- Where is synchronization allowed?
 - Between any execution context at various granularities

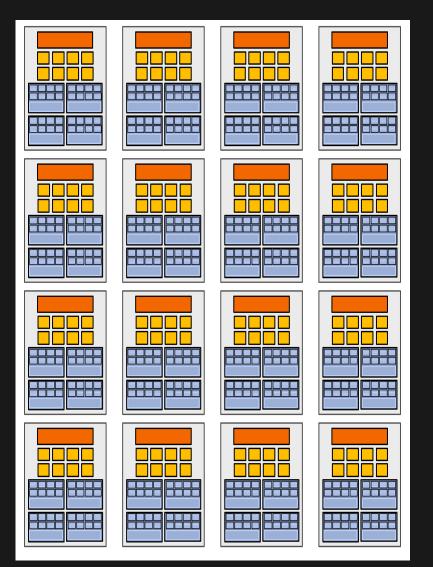
Conventional Thread Parallelism

• Directly program:

— ...

- N execution contexts
- N SIMD ALUs / execution context

- To use SIMD ALUS:
 __m128 a_line, b_line, r_line;
 r_line = _mm_mul_ps(a_line, b_line);
- Powerful, but dangerous...



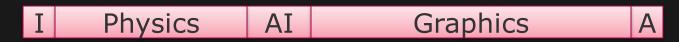
Winter 2011 – Beyond Programmable Shading

Figure by Kayvon Fatahalian

Game Workload Example

Typical Game Workload

- Subsystems given % of overall time "budget"
- Input, Miscellaneous: 5%
- Physics: 30%
- AI, Game Logic: 10%
- Graphics: 50%
- Audio: 5%



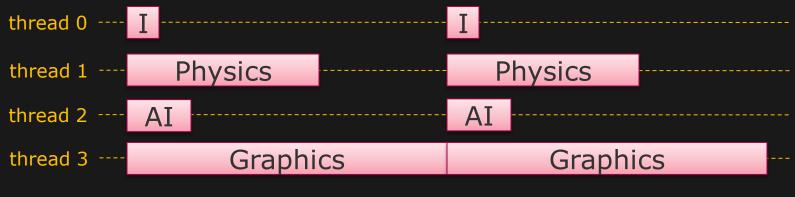
• GPU Workload:

"Rendering"

Winter 2011 – Beyond Programmable Shading

Parallelism Anti-Pattern #1

Assign each subsystems to a SW thread



frame N

• Problems

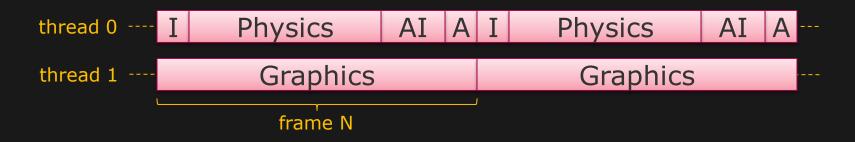
- Communication/synchronization
- Load imbalance
- Preemption leads to thrashing

• Don't do this!

Winter 2011 – Beyond Programmable Shading

Parallelism Anti-Pattern #2

• Group subsystems into HW threads



- Problems
 - Communication/synchronization
 - Load imbalance
 - Poor scalability (4, 8, ... HW threads)

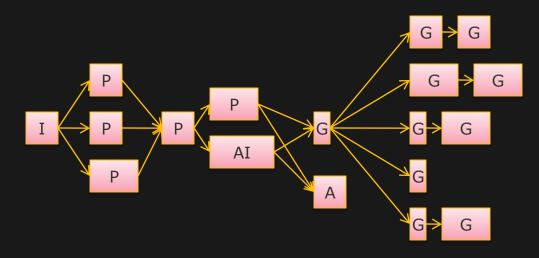
• Don't do this either!

Winter 2011 – Beyond Programmable Shading

Better Solution: Find Concurrency...

 Identify where ordering constraints are needed and run concurrently between constraints

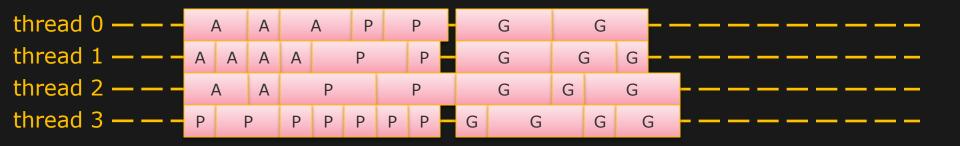
• Visualize as a graph



Winter 2011 – Beyond Programmable Shading

...And Distribute Work to Threads

- Dynamically distribute medium-grained concurrent tasks to hardware threads
- (Virtualize/abstract the threads"



Winter 2011 – Beyond Programmable Shading

"Task Systems" (Cilk, TBB, ConcRT, GCD, ...)

• Execution

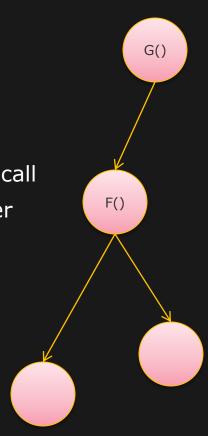
- Concurrent execution of many (likely different) tasks

• What is abstracted?

- Cores and execution contexts
- Does not abstract: SIMD functional units or memory hierarchy
- Where is synchronization allowed?
 - Between tasks

Mental Model: Task Systems

- Think of task as asynchronous function call
 - "Do F() at some point in the future..."
 - Optionally "... after G() is done"
- Can be implemented in HW or SW
 - Launching/spawning task is nearly as fast as function call
 - Usage model: "Spawn 1000s of tasks and let scheduler map tasks to execution contexts"
- Usually cooperative, not preemptive
 - Task runs to completion no blocking
 - Can create new tasks, but not wait



Task Parallel Code (Cilk)

```
void myTask(...some arguments...)
{
}
void main()
{
   for (i = 0 to NumTasks - 1)
   {
      cilk spawn myTask(...);
   }
   cilk sync;
}
```

Task Parallel Code (Cilk)

```
void myTask(...some arguments...)
{
}
void main()
{
   cilk_for( i = 0 to NumTasks - 1 )
   {
      myTask(...);
   }
   cilk sync;
}
```

Nested Task Parallel Code (Cilk)

```
void barTask(...some parameters...)
{
}
void fooTask(...some parameters...)
{
   if (someCondition) {
      cilk spawn barTask(...);
   }
   else {
      cilk spawn fooTask(...);
   }
   // Implicit cilk sync at end of function
}
void main()
ł
   cilk for( i = 0 to NumTasks - 1 ) {
      fooTask(...);
   }
   cilk sync;
   ... More code ...
}
```

"Task Systems" Review

• Execution

- Concurrent execution of many (likely different) tasks
- What is abstracted?
 - Cores and execution contexts
 - Does not abstract: SIMD functional units or memory hierarchy
- Where is synchronization allowed?
 - Between tasks

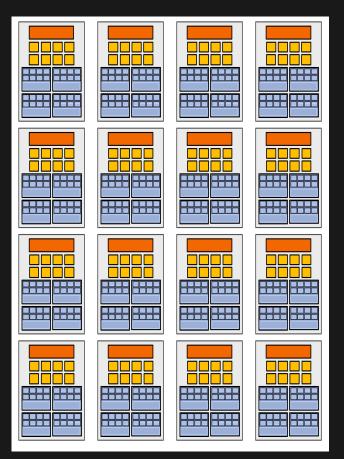


Figure by Kayvon Fatahalian

DirectX/OpenGL Rendering Pipeline (Combination of multiple models)

- Execution
 - Data-parallel concurrent execution of identical task within each shading stage
 - Task-parallel concurrent execution of different shading stages
 - No parallelism exposed to user
- What is abstracted?
 - (just about everything)
 - Cores, execution contexts, SIMD functional units, memory hierarchy, and fixed-function graphics units (tessellator, rasterizer, ROPs, etc)
- Where is synchronization allowed?
 - Between draw calls

GPU Compute Languages (Combination of Multiple Models)

- DX11 DirectCompute
- OpenCL
- CUDA
- There are multiple possible usage models. We'll start with the "text book" hierarchical data-parallel usage model

GPU Compute Languages

Execution

- Hierarchical model
- Lower level is parallel execution of identical tasks (work-items) within work-group
- Upper level is concurrent execution of identical work-groups

• What is abstracted?

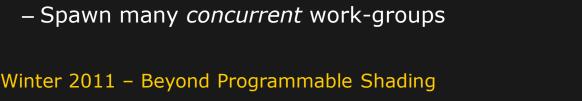
- Work-group abstracts a core's execution contexts, SIMD functional units
- Set of work-groups abstracts cores
- Does not abstract core-local memory
- Where is synchronization allowed?
 - Between work-items in a work-group
 - Between "passes" (set of work-groups)

GPU Compute Pseudocode

```
void myWorkGroup()
{
   parallel for(i = 0 to NumWorkItems - 1)
    {
     ... GPU Kernel Code ... (This is where you write GPU compute code)
}
void main()
{
   concurrent for( i = 0 to NumWorkGroups - 1)
   {
     myWorkGroup();
   }
   sync;
}
```

DX CS/OCL/CUDA Execution Model

- Fundamental unit is work-item
 - Single instance of "kernel" program (i.e., "task" using the definitions in this talk)
 - Each work-item executes in single SIMD lane
- Work items collected in work-groups
 - Work-group scheduled on single core
 - Work-items in a work-group
 - Execute in parallel
 - Can share R/W on-chip scratchpad memory
 - Can wait for other work-items in work-group
- Users launch a grid of work-groups
 - Spawn many *concurrent* work-groups



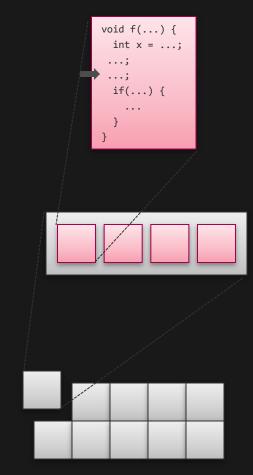
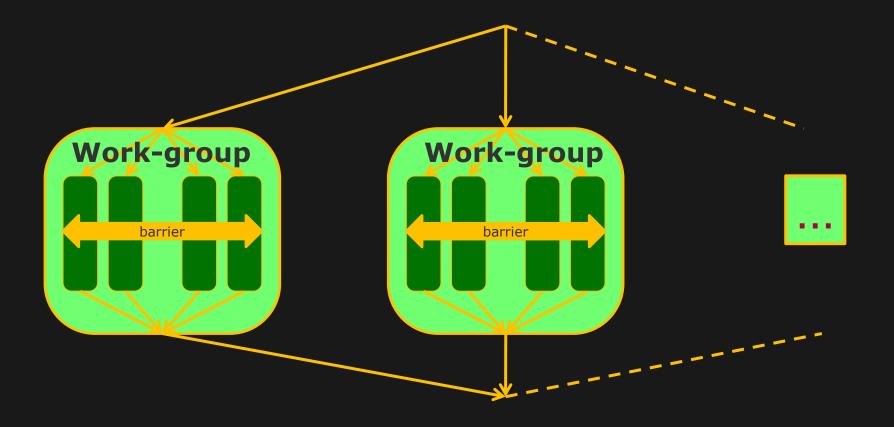


Figure by Tim Foley

GPU Compute Models



Winter 2011 – Beyond Programmable Shading

GPU Compute Use Cases

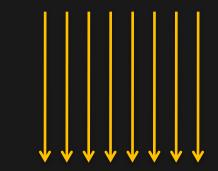
- 1:1 Mapping
- Simple Fork/Join
- Switching Axes of Parallelism

Increasing Sophistication

1:1 Mapping

- One work item per ray / per pixel / per matrix element
- Every work item executes the same kernel
- Often first, most obvious solution to a problem
- "Pure data parallelism"

```
void saxpy( int i,
        float a,
        const float* x,
        const float* y,
        float* result )
{
    result[i] = a * x[i] + y[ i ];
}
```

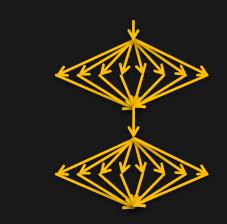


Winter 2011 – Beyond Programmable Shading

Simple Fork/Join

- Some code must run at work-group granularity
 - Example: work items cooperate to compute output structure size
 - Atomic operation to allocate output must execute once
- Idiomatic solution
 - Barrier, then make work item #0 do the group-wide operation

```
void subdividePolygon(...)
{
    shared int numOutputPolygons = 0;
    // in parallel, every work item does
    atomic_add( numOutputPolygons, 1);
    barrier();
    Polygon* output = NULL;
    if( workItemID == 0 ) {
        output = allocateMemory( numOutputPolygons );
    }
    barrier();
    ...
}
```



Slide by Tim Foley

Multiple Axes of Parallelism

- Deferred rendering with DX11 Compute Shader
 - Example from Johan Andersson (DICE)
 - 1000+ dynamic lights
- Multiple phases of execution
 - Work group responsible for a screen-space tile
 - Each phase exploits work items differently:
 - Phase 1: pixel-parallel computation of tile depth bounds
 - Phase 2: light-parallel test for intersection with tile
 - Phase 3: pixel-parallel accumulation of lighting
- Exploits producer-consumer locality between phases

Terminology Decoder Ring

Direct Compute	CUDA	OpenCL	Pthreads+ SSE	This talk
thread	thread	work-item	SIMD lane	work-item
-	warp	-	thread	execution context
threadgroup	threadblock	Work-group	-	work-group
-	streaming multiproces sor	compute unit	core	core
_	grid	N-D range	-	Set of work- groups

When Use GPU Compute vs Pixel Shader?

- Use GPU compute language if your algorithm needs on-chip memory
 - Reduce bandwidth by building local data structures
- Otherwise, use pixel shader
 - All mapping, decomposition, and scheduling decisions automatic
 - (Easier to reach peak performance)

GPU Compute Languages Review

- "Write code from within two nested concurrent/parallel loops"
- Abstracts
 - Cores, execution contexts, and SIMD ALUs
- Exposes
 - Parallel execution contexts on same core
 - Fast R/W on-core memory shared by the execution contexts on same core

Synchronization

- Fine grain: between execution contexts on same core
- Very coarse: between large sets of concurrent work
- No medium-grain synchronization "between function calls" like task systems provide

Conventional Thread Parallelism on GPUs

- Also called "persistent threads"
- "Expert" usage model for GPU compute
 - Defeat abstractions over cores, execution contexts, and SIMD functional units
 - Defeat system scheduler, load balancing, etc.
 - Code not portable between architectures

Conventional Thread Parallelism on GPUs

Execution

- Two-level parallel execution model
- Lower level: parallel execution of M identical tasks on M-wide SIMD functional unit
- Higher level: parallel execution of N different tasks on N execution contexts
- What is abstracted?
 - Nothing (other than automatic mapping to SIMD lanes)
- Where is synchronization allowed?
 - Lower-level: between any task running on same SIMD functional unit
 - Higher-level: between any execution context

Why Persistent Threads?

- Enable alternate programming models that require different scheduling and synchronization rules than the default model provides
- Example alternate programming models
 - Task systems (esp. nested task parallelism)
 - Producer-consumer rendering pipelines
 - (See references at end of this slide deck for more details)

Summary of Concepts

Abstraction

- When a parallel programming model abstracts a HW resource, code written in that programming model scales across architectures with varying amounts of that resource
- Execution
 - Concurrency versus parallelism
- Synchronization
 - Where is user allowed to control scheduling?

"Ideal Parallel Programming Model"

- Combine the best of CPU and GPU programming models
 - Task systems are great for scheduling (from CPUs)
 - "Asynchronous function call" is easy to understand and use
 - Great load balancing and scalability (with cores, execution contexts)
 - SPMD programming is great for utilizing SIMD (from GPUs)
 - "Write sequential code that is instanced N times across N-wide SIMD"
 - Intuitive: only slightly different from sequential programming
- Why not just "launch tasks that run fine-grain SPMD code?"
 - The future on CPU and GPU?

Conclusions

- Task-, data- and pipeline-parallelism
 - Three proven approaches to scalability
 - Plentiful of concurrency with little exposed parallelism
 - Applicable to many problems in visual computing
- Current real-time rendering programming uses a mix of data-, task-, and pipeline-parallel programming (and conventional threads as means to an end)
- Current GPU compute models designed for data-parallelism but can be abused to implement all of these other models

References

- GPU-inspired compute languages
 - <u>DX11 DirectCompute</u>, <u>OpenCL</u> (CPU+GPU+...), <u>CUDA</u>
- Task systems (CPU and CPU+GPU+...)
 - <u>Cilk</u>, <u>Thread Building Blocks (TBB)</u>, <u>Grand Central Dispatch (GCD)</u>, <u>ConcRT</u>, <u>Task Parallel Library</u>, <u>OpenCL</u> (limited in 1.0)
- Conventional CPU thread programming
 - <u>Pthreads</u>
- GPU task systems and "persistent threads" (i.e., conventional thread programming on GPU)
 - Aila et al, "<u>Understanding the Efficiency of Ray Traversal on GPUs</u>," High Performance Graphics 2009
 - Tzeng et al, "<u>Task Management for Irregular-Parallel Workloads on the GPU</u>," High Performance Graphics 2010
 - Parker et al, "OptiX: A General Purpose Ray Tracing Engine," SIGGRAPH 2010
- Additional input (concepts, terminology, patterns, etc)
 - Foley, "Parallel Programming for Graphics,"
 - Beyond Programmable Shading SIGGRAPH 2009
 - Beyond Programmable Shading CS448s Stanford course
 - Fatahalian, "<u>Running Code at a Teraflop: How a GPU Shader Core Works</u>," Beyond Programmable Shading SIGGRAPH 2009-2010
 - Keutzer et al, "<u>A Design Pattern Language for Engineering (Parallel) Software: Merging the PLPP and OPL projects</u>, " ParaPLoP 2010

Questions?

http://www.cs.washington.edu/education/courses/cse558/11wi/