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What’s In This Talk?

• Brief review of Monday’s lecture

• Advanced usage patterns of GPU compute languages

• Rendering uses cases for GPU Computing Languages

– Histograms (for shadows, tone mapping, etc)

– Deferred rendering

– Writing new graphics pipelines (sort of )
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Remember: “Our Enthusiast Chip”

Figure by Kayvon Fatahalian
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Definitions: Execution

• Task
– A logically related set of instructions executed in a single execution context

(aka shader, instance of a kernel, task)

• Concurrent execution

– Multiple tasks that may execute simultaneously

(because they are logically independent)

• Parallel execution

– Multiple tasks whose execution contexts are guaranteed to be live simultaneously

(because you want them to be for locality, synchronization, etc)
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Synchronization

• Synchronization 

– Restricting when tasks are permitted to execute

• Granularity of permitted synchronization determines at which 
granularity system allows user to control scheduling
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GPU Compute Languages Review

• “Write code from within two nested concurrent/parallel loops”

• Abstracts 

– Cores, execution contexts, and SIMD ALUs

• Exposes

– Parallel execution contexts on same core

– Fast R/W on-core memory shared by the execution contexts on same core

• Synchronization

– Fine grain: between execution contexts on same core

– Very coarse: between large sets of concurrent work

– No medium-grain synchronization “between function calls” like task 
systems provide
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GPU Compute Pseudocode

void myWorkGroup() 

{

parallel_for(i = 0 to NumWorkItems - 1)

{

… GPU Kernel Code … (This is where you write GPU compute code)

}

}

void main()

{

concurrent_for( i = 0 to NumWorkGroups - 1)

{

myWorkGroup();

}

sync;

}
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DX CS/OCL/CUDA Execution Model

• Fundamental unit is work-item

– Single instance of “kernel” program 
(i.e., “task” using the definitions in this talk)

– Each work-item executes in single SIMD lane

• Work items collected in work-groups

– Work-group scheduled on single core

– Work-items in a work-group 

– Execute in parallel

– Can share R/W on-chip scratchpad memory

– Can wait for other work-items in work-group

• Users launch a grid of work-groups

– Spawn many concurrent work-groups

void f(...) {

int x = ...;

...;

...;

if(...) {

...

}

}

Figure by Tim Foley
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When Use GPU Compute vs Pixel 
Shader?

• Use GPU compute language if your algorithm needs on-chip memory

– Reduce bandwidth by building local data structures

• Otherwise, use pixel shader

– All mapping, decomposition, and scheduling decisions automatic

– (Easier to reach peak performance)
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Conventional Thread Parallelism on GPUs

• Also called “persistent threads”

• “Expert” usage model for GPU compute

– Defeat abstractions over cores, execution contexts, and SIMD functional units

– Defeat system scheduler, load balancing, etc.

– Code not portable between architectures
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• Execution

– Two-level parallel execution model

– Lower level: parallel execution of M identical tasks on M-wide SIMD 

functional unit

– Higher level: parallel execution of N different tasks on N execution contexts

• What is abstracted?

– Nothing (other than automatic mapping to SIMD lanes)

• Where is synchronization allowed?

– Lower-level: between any task running on same SIMD functional unit

– Higher-level: between any execution context

Conventional Thread Parallelism on GPUs
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Why Persistent Threads?

• Enable alternate programming models that require different 
scheduling and synchronization rules than the default model 
provides

• Example alternate programming models

– Task systems (esp. nested task parallelism)

– Producer-consumer rendering pipelines

– (See references at end of this slide deck for more details)
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Building Histogram in DX11 CS

[numthreads(BLOCK_DIM, BLOCK_DIM, 1)]

void ScatterHistogram(uint3 groupId : SV_GroupID,

uint3 groupThreadId : SV_GroupThreadID,

uint groupIndex : SV_GroupIndex)

{

// Initialize local histogram in parallel

// Parallelism:

//   - Within threadgroup:  SIMD lanes map to histogram bins

//   - Between threadgroups: Each threadgroup has own histogram

localHistogram[groupIndex] = emptyBin();

GroupMemoryBarrierWithGroupSync();

. . . 
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Building Histogram in DX11 CS

// Build histogram in parallel

// Parallelism:

//   - Within threadgroup:   SIMD lanes map to pixels in image tile

//   - Between threadgroups: Each threadgroup maps to image tile

// Read and compute surface data

uint2 globalCoords = groupId.xy * TILE_DIM + groupThreadId.xy;

SurfaceData data = ComputeSurfaceDataFromGBuffer(globalCoords);

// Bin based on view space Z

// Scatter data to the right bin in our local (on-chip) histogram 

int bin = int(ZToBin(data.positionView.z));

InterlockedAdd(localHistogram[bin].count, 1U);

InterlockedMin(localHistogram[bin].bounds.minTexCoordX, data.texCoordX);

InterlockedMax(localHistogram[bin].bounds.maxTexCoordX, data.texCoordX);    

//… (more atomic min/max operations for other values in histogram bin) …

GroupMemoryBarrierWithGroupSync();

. . . 
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Building Histogram in DX11 CS

// Use per-threadgroup scalar code to atomically merge all on-chip histograms into 

// single histogram in global memory.

// Parallelism

//  - Within threadgroup:   SIMD lanes map to histogram elements

//  - Between threadgroups: Each threadgroup writing to single global histogram

uint i = groupIndex;

if (localHistogram[i].count > 0) {

InterlockedAdd(gHistogram[i].count, histogram[i].count);

InterlockedMin(gHistogram[i].bounds.minTexCoordX,   histogram[i].bounds.minTexCoordX );

InterlockedMin(gHistogram[i].bounds.minTexCoordY,   histogram[i].bounds.minTexCoordY );

InterlockedMin(gHistogram[i].bounds.minLightSpaceZ, histogram[i].bounds.minLightSpaceZ);

InterlockedMax(gHistogram[i].bounds.maxTexCoordX,   histogram[i].bounds.maxTexCoordX );

InterlockedMax(gHistogram[i].bounds.maxTexCoordY,   histogram[i].bounds.maxTexCoordY );

InterlockedMax(gHistogram[i].bounds.maxLightSpaceZ, histogram[i].bounds.maxLightSpaceZ);

}

}
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Optimization: Moving farther away 
from basic data-parallelism
• Problem---1:1 mapping between workgroups and image tiles

– Flushes local memory to global memory more times than necessary

– Would like larger workgroups but limited to 1024 workitems per group

• Solution

– Use the largest workgroups possible (1024 workitems)

– Launch fewer workgroups. Find sweet spot that fills all threads on all cores to 
maximize latency hiding but minimizes the writes to global memory

– Loop over multiple image tiles within a single compute shader

• Take-away

– “Invoke just enough parallel work to fill the SIMD lanes, threads, and cores of 
the machine to achieve sufficient latency hiding”

– The abstraction is broken  because this optimization exposes the number of 
hardware resources 
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Building Histogram in DX11 CS

// Build histogram in parallel

// Parallelism:

//   - Within threadgroup:   SIMD lanes map to pixels in image tile

//   - Between threadgroups: Each threadgroup maps to image tile

uint2 tileStart = groupId.xy * TILE_DIM + groupThreadId.xy;

for (uint tileY = 0; tileY < TILE_DIM; tileY += BLOCK_DIM) {

for (uint tileX = 0; tileX < TILE_DIM; tileX += BLOCK_DIM) {

// Read and compute surface data

uint2 globalCoords = groupId.xy * TILE_DIM + groupThreadId.xy;

SurfaceData data = ComputeSurfaceDataFromGBuffer(globalCoords);

// Bin based on view space Z

// Scatter data to the right bin in our local (on-chip) histogram 

int bin = int(ZToBin(data.positionView.z));

InterlockedAdd(localHistogram[bin].count, 1U);

InterlockedMin(localHistogram[bin].bounds.minTexCoordX, 

data.texCoordX);

… (more atomic min/max ops for other values in histogram bin) …

}}

GroupMemoryBarrierWithGroupSync();

. . . 
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SW Pipeline 1: Particle Rasterizer

• Mock-up particle rendering pipeline with render-target-read

– Written by 2 people over the course of 1 week

– Runs ~2x slower than D3D rendering pipeline (but has glass jaws)

Without Volumetric Shadow With Volumetric Shadow
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Tiled Particle Rasterizer in DX11 CS

[numthreads(RAST_THREADS_X, RAST_THREADS_Y, 1)]

void RasterizeParticleCS(uint3 groupId : SV_GroupID,

uint3 groupThreadId : SV_GroupThreadID,

uint groupIndex : SV_GroupIndex)

{

uint i = 0;  // For all particles..

while (i < mParticleCount) {

GroupMemoryBarrierWithGroupSync();    

const uint particlePerIter = min(mParticleCount - i, NT_X * NT_Y);

// Vertex shader and primitive assembly

// Parallelism: SIMD lanes map over particles.

if (groupIndex < particlePerIter) {

const uint particleIndex = i + groupIndex;

// … read vertex data for this particle from memory,

//   construct screen-facing quad, test if particle intersects tile,

//   use atomics to on-chip memory to append to list of particles

}

GroupMemoryBarrierWithGroupSync(); 

. . . 
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Tiled Particle Rasterizer in DX11 CS

// Find all particles that intersect this pixel

// Parallelism: SIMD lanes map over pixels in image tile

for (n = 0; n < gVisibileParticlePerIter; n++) {

if (ParticleIntersectsPixel(gParticles[n], fragmentPos)) {            

float dx, dy;

ComputeInterpolants(gParticles[n], fragmentPos, dx, dy);

float3 viewPos = BilinearInterp3(gParticles[n].viewPos, dx, dy);

float3 entry, exit, t;

if (IntersectParticle(viewPos, gParticles[n], entry, exit, t)) {

// Run pixel shader on this particle

// Read-modify-write framebuffer held in global off-chip memory

}

}

}

i += particlePerIter;

}
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SW Pipeline 1: Particle Rasterizer

• Usage

– Atomics to on-chip memory

– Gather/scatter to on-chip and off-chip memory

– Latency hiding of off-chip memory accesses

• Lesson learned

– The programmer productivity of these programming models is impressive

– This pipeline is statically scheduled (from a SW perspective) but underlying 
hardware scheduler is dynamically scheduling threadgroups

– Needs to be doing dynamic SW scheduling to achieve more stable / higher 
performance
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Deferred Rendering
(Slides by Andrew Lauritzen)

(Possibly the most important use of ComputeShader)
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Overview

• Forward shading

• Deferred shading and lighting

• Tile-based deferred shading
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Forward Shading

• Do everything we need to shade a pixel

– for each light

– Shadow attenuation (sampling shadow maps)

– Distance attenuation

– Evaluate lighting and accumulate

• Multi-pass requires resubmitting scene geometry

– Not a scalable solution

Slide by Andrew Lauritzen
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Forward Shading Problems

• Ineffective light culling

– Object space at best

– Trade-off with shader permutations/batching

• Memory footprint of all inputs

– Everything must be resident at the same time (!)

• Shading small triangles is inefficient

– Covered earlier in this course: [Fatahalian 2010]

Slide by Andrew Lauritzen
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Conventional Deferred Shading

• Store lighting inputs in memory (G-buffer)

– for each light

– Use rasterizer to scatter light volume and cull

– Read lighting inputs from G-buffer

– Compute lighting

– Accumulate lighting with additive blending

• Reorders computation to extract coherence

Slide by Andrew Lauritzen
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Modern Implementation

• Cull with screen-aligned quads

– Cover light extents with axis-aligned bounding box

– Full light meshes (spheres, cones) are generally overkill

– Can use oriented bounding box for narrow spot lights

– Use conservative single-direction depth test

– Two-pass stencil is more expensive than it is worth

– Depth bounds test on some hardware, but not batch-friendly

Slide by Andrew Lauritzen
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Lit Scene (256 Point Lights)

Slide by Andrew Lauritzen
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Deferred Shading Problems

• Bandwidth overhead when lights overlap

– for each light

– Use rasterizer to scatter light volume and cull

– Read lighting inputs from G-buffer  overhead

– Compute lighting

– Accumulate lighting with additive blending  overhead

• Not doing enough work to amortize overhead

Slide by Andrew Lauritzen
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Improving Deferred Shading

• Reduce G-buffer overhead

– Access fewer things inside the light loop

– Deferred lighting / light pre-pass

• Amortize overhead

– Group overlapping lights and process them together

– Tile-based deferred shading

Slide by Andrew Lauritzen
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Tile-Based Deferred Rendering

Parallel_for over lights

Atomically append lights that affect tile to shared list

Barrier

Parallel_for over pixels in tile

Evaluate all selected lights at each pixel
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Tile-Based Deferred Shading

• Goal: amortize overhead

– Large reduction in bandwidth requirements

• Use screen tiles to group lights

– Use tight tile frusta to cull non-intersecting lights

– Reduces number of lights to consider

– Read G-buffer once and evaluate all relevant lights

– Reduces bandwidth of overlapping lights

• See [Andersson 2009] for more details

Slide by Andrew Lauritzen
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Lit Scene (1024 Point Lights)

Slide by Andrew Lauritzen
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Tile-Based Light Culling

Slide by Andrew Lauritzen
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Quad-Based Lighting Culling

Slide by Andrew Lauritzen
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Slide by Andrew Lauritzen
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Slide by Andrew Lauritzen
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Anti-aliasing

• Multi-sampling with deferred rendering requires some work

– Regular G-buffer couples visibility and shading

• Handle multi-frequency shading in user space

– Store G-buffer at sample frequency

– Only apply per-sample shading where necessary

– Offers additional flexibility over forward rendering

Slide by Andrew Lauritzen
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Identifying Edges

• Forward MSAA causes redundant work

– It applies to all triangle edges, even for continuous, tessellated surfaces

• Want to find surface discontinuities

– Compare sample depths to depth derivatives

– Compare (shading) normal deviation over samples

Slide by Andrew Lauritzen
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Per-Sample Shading Visualization

Slide by Andrew Lauritzen
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Deferred Rendering Conclusions

• Deferred shading is a useful rendering tool

– Decouples shading from visibility

– Allows efficient user-space scheduling and culling

• Tile-based methods win going forward

– ComputeShader/OpenCL/CUDA implementations save a lot of bandwidth

– Fastest and most flexible

– Enable efficient MSAA

Slide by Andrew Lauritzen
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Summary for GPU Compute Languages

• GPU compute languages

– “Easy” way to exploit compute capability of GPUs (easier than 3D APIs)

– The performance benefit over pixel shaders comes when using on-core 
R/W memory to save off-chip bandwidth

– Increasingly used as “just another tool in the real-time graphics 
programmer’s toolkit”

– Deferred rendering

– Shadows

– Post-processing

– …

– The current languages have a lot of rough edges and limitations.

Slide by Andrew Lauritzen
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Backup
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Future Work

• Hierarchical light culling

– Straightforward but would need lots of small lights

•Improve MSAA memory usage

–Irregular/compressed sample storage?

–Revisit binning pipelines?

–Sacrifice higher resolutions for better AA?

Slide by Andrew Lauritzen
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Questions?

• Full source and demo available at:

– http://visual-computing.intel-
research.net/art/publications/deferred_rendering/

Slide by Andrew Lauritzen
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Quad-Based Light Culling

Slide by Andrew Lauritzen
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Deferred Lighting / Light Pre-Pass

• Goal: reduce G-buffer overhead

• Split diffuse and specular terms

– Common concession is monochromatic specular

• Factor out constant terms from summation

– Albedo, specular amount, etc.

• Sum inner terms over all lights

Slide by Andrew Lauritzen
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Deferred Lighting / Light Pre-Pass

• Resolve pass combines factored components

– Still best to store all terms in G-buffer up front

– Better SIMD efficiency

• Incremental improvement for some hardware

– Relies on pre-factoring lighting functions

– Ability to vary resolve pass is not particularly useful

• See [Hoffman 2009] and [Stone 2009]

Slide by Andrew Lauritzen
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MSAA with Quad-Based Methods

• Mark pixels for per-sample shading

– Stencil still faster than branching on most hardware

– Probably gets scheduled better

• Shade in two passes: per-pixel and per-sample

– Unfortunately, duplicates culling work

– Scheduling is still a problem

Slide by Andrew Lauritzen
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Per-Sample Scheduling

• Lack of spatial locality causes hardware scheduling inefficiency

Slide by Andrew Lauritzen
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MSAA with Tile-Based Methods

• Handle per-pixel and per-sample in one pass

– Avoids duplicate culling work

– Can use branching, but incurs scheduling problems

– Instead, reschedule per-sample pixels

– Shade sample 0 for the whole tile

– Pack a list of pixels that require per-sample shading

– Redistribute threads to process additional samples

– Scatter per-sample shaded results

Slide by Andrew Lauritzen
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Tile-Based MSAA at 1080p, 1024 
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Slide by Andrew Lauritzen
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Deferred lighting even less compelling
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