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Abstract—The proliferation of applications that must reliably distribute
bulk data to a large number of autonomous clients motivates the design of
new multicast and broadcast protocols. We describe an ideal, fully scal-
able protocol for these applications that we call a digital fountain. A digital
fountain allows any number of heterogeneous clients to acquire bulk data
with optimal efficiency at times of their choosing. Moreover, no feedback
channels are needed to ensure reliable delivery, even in the face of high loss
rates.

We develop a protocol that closely approximates a digital fountain us-
ing a new class of erasure codes that for large block sizes are orders of
magnitude faster than standard erasure codes. We provide performance
measurements that demonstrate the feasibility of our approach and discuss
the design, implementation and performance of an experimental system.

I. INTRODUCTION

A natural solution for software companies that plan to effi-
ciently disseminate new software over the Internet to millions of
users simultaneously is multicast or broadcast transmission [24].
These transmissions must be fully reliable, have low network
overhead, and support vast numbers of receivers with heteroge-
neous characteristics. Other activities that have similar require-
ments include distribution of popular images, database replica-
tion and popular web site access. These applications require
more than just a reliable multicast protocol, since users wish to
access the data at times of their choosing and these access times
will overlap with those of other users.

While unicast protocols successfully use receiver initiated re-
quests for retransmission of lost data to provide reliability, it is
widely known that the multicast analog of this solution is unscal-
able. For example, consider a server distributing a new software
release to thousands of clients. As clients lose packets, their
requests for retransmission can quickly overwhelm the server
in a process known as feedback implosion. Even in the event
that the server can handle the requests, the retransmitted pack-
ets are often of use only to a small subset of the clients. More
sophisticated solutions that address these limitations by using
techniques such as local repair, polling, or the use of a hierar-
chy have been proposed [5], [10], [15], [16], [?], but these solu-
tions as yet appear inadequate [19]. Moreover, whereas adaptive
retransmission-based solutions are at best unscalable and inef-
ficient on terrestrial networks, they are unworkable on satellite
networks, where the back channel typically has high latency and
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limited capacity, if it is available at all.
The problems with solutions based on adaptive retransmis-

sion have led many researchers to consider applying Forward
Error Correction based on erasure codes1 to reliable multicast
[6], [17], [18], [20], [22], [23], [24], [25]. The basic princi-
ple behind the use of erasure codes is that the original source
data, in the form of a sequence of k packets, along with addi-
tional redundant packets, are transmitted by the sender, and the
redundant data can be used to recover lost source data at the re-
ceivers. A receiver can reconstruct the original source data once
it receives a sufficient number of packets. The main benefit of
this approach is that different receivers can recover from dif-
ferent lost packets using the same redundant data. In principle,
this idea can greatly reduce the number of retransmissions, as
a single retransmission of redundant data can potentially bene-
fit many receivers simultaneously. (In other applications, such
as real-time video, retransmission may also be undesirable due
to timing constraints; we emphasize that we are not considering
real-time applications here.)

The recent work of Nonnenmacher, Biersack and Towsley
[20] defines a hybrid approach to reliable multicast, coupling re-
quests for retransmission with transmission of redundant code-
words, and quantifies the benefits of this approach in practice.
Their work, and the work of many other authors, focus on era-
sure codes based on Reed-Solomon codes [7], [16], [17], [18],
[22], [23], [24]. The limitation of these codes is that encoding
and decoding times are slow on large block sizes, effectively
limiting k to small values for practical applications. Hence, their
solution involves breaking the source data into small blocks of
packets and encoding over these blocks. Receivers that have not
received a packet from a given block request retransmission of
an additional codeword from that block. They demonstrate that
this approach is effective for dramatically reducing the number
of retransmissions, when packet loss rates are low (they typi-
cally consider 1% loss rates). However, this approach cannot
eliminate the need for retransmissions, especially as the num-
ber of receivers grows large or for higher rates of packet loss.
Their approach also does not enable receivers to join the session
dynamically.

To eliminate the need for retransmission and to allow re-
ceivers to access data asynchronously, the use of a data carousel
or broadcast disk approach can ensure full reliability [1]. In
a data carousel approach, the source repeatedly loops through
transmission of all data packets. Receivers may join the stream

1Erasure codes are sometimes called forward-error correcting codes (FEC
codes) in the networking community. However, FEC often refers to codes that
detect and correct errors, and these codes are typically implemented in special
purpose hardware. To avoid confusion, we always refer to the codes we consider
as erasure codes.



at any time, then listen until they receive all distinct packets
comprising the transmission. Clearly, the reception overhead
at a receiver, measured in terms of unnecessary receptions, can
be extremely high using this approach. As shown in [23], [?],
adding redundant codewords to the carousel can dramatically re-
duce reception overhead. These papers advocate adding a fixed
amount of redundancy to blocks of the transmission using Reed-
Solomon codes. The source then repeatedly loops through the
set of blocks, transmitting one data or redundant packet about
each block in turn until all packets are exhausted, and then re-
peats the process. This interleaved approach enables the receiver
to reconstruct the source data once it receives sufficiently many
packets from each block. The limitation of using this approach
over lossy networks is that the receiver may still receive many
unnecessary packets from blocks that have already been recon-
structed while waiting for the last packets from the last few
blocks it still needs to reconstruct.

The approaches described above that eliminate the need for
retransmission requests can be thought of as weak approxima-
tions of an ideal solution, which we call a digital fountain.
A digital fountain is conceptually simpler, more efficient, and
applicable to a broader class of networks than previous ap-
proaches. A digital fountain injects a stream of distinct encoding
packets into the network, from which a receiver can reconstruct
the source data. The key property of a digital fountain is that the
source data can be reconstructed intact from any subset of the
encoding packets equal in total length to the source data. The
digital fountain concept is similar to ideas found in the seminal
works of Maxemchuk [13], [14] and Rabin [21]. Our approach
is to construct better approximations of a digital fountain as a ba-
sis for protocols that perform reliable distribution of bulk data.

We emphasize that the digital fountain concept is quite gen-
eral and can be applied in diverse network environments. For
example, our framework for data distribution is applicable to
the Internet, satellite networks, and wireless networks with mo-
bile agents. These environments are quite different in terms of
packet loss characteristics, congestion control mechanisms, and
end-to-end latency; we strive to develop a solution independent
of these environment-specific variables. These considerations
motivate us to study, for example, a wide range of packet loss
rates in our comparisons.

The body of the paper is organized as follows. In the next sec-
tion, we describe in more detail the characteristics of the prob-
lems we consider. In Section III, we describe the digital fountain
solution. In Section IV, we describe how to build a good theoret-
ical approximation of a digital fountain using erasure codes. A
major hurdle in implementing a digital fountain is that standard
Reed-Solomon codes have unacceptably high running times for
these applications. Hence, in Section V, we describe Tornado
codes, a new class of erasure codes that have extremely fast en-
coding and decoding algorithms. These codes generally yield
a far superior approximation to a digital fountain than can be
realized with Reed-Solomon codes in practice, as we show in
Section VI. Finally, in Section VII, we describe the design and
performance of a working prototype system for bulk data distri-
bution based on Tornado codes that is built on top of IP Multi-
cast. The performance of the prototype bears out the simulation
results, and it also demonstrates the interoperability of this work

with the layered multicast techniques of [25]. We conclude with
additional research directions for the digital fountain approach.

II. REQUIREMENTS FOR AN IDEAL PROTOCOL

We recall an example application in which millions of clients
want to download a new release of software over the course of
several days. In this application, we assume that there is a dis-
tribution server, and that the server will send out a stream of
packets (using either broadcast or multicast) as long as there are
clients attempting to download the new release. This software
download application highlights several important features com-
mon to many similar applications that must distribute bulk data.
In addition to keeping network traffic to a minimum, a scalable
protocol for distributing the software using multicast should be:
� Reliable: The file is guaranteed to be delivered in its entirety
to all receivers.
� Efficient: Both the total number of packets each client needs
to receive and the amount of time required to process the re-
ceived packets to reconstruct the file should be minimal. Ideally,
the total time for the download for each client should be no more
than it would be had point-to-point connections been used.
� On demand: Clients may initiate the download at their dis-
cretion, implying that different clients may start the download at
widely disparate times. Clients may sporadically be interrupted
and continue the download at a later time.
� Tolerant: The protocol should tolerate a heterogeneous pop-
ulation of receivers, especially a variety of end-to-end packet
loss rates and data rates.

We also state our assumptions regarding channel characteris-
tics. IP multicast on the Internet, satellite transmission, wire-
less transmission, and cable transmission are representative of
channels we consider. Perhaps the most important property
of these channels is that the return feedback channel from the
clients to the server is typically of limited capacity, or is non-
existent. This is especially applicable to satellite transmission.
These channels are generally packet based, and each packet has
a header including a unique identifier. They are best-effort chan-
nels designed to attempt to deliver all packets, but frequently
packets are lost or corrupted. Wireless networks are particularly
prone to high rates of packet loss and all of the networks we
describe are prone to bursty loss periods. We assume that error-
correcting codes are used to correct and detect errors within a
packet. But if a packet contains more errors than can be cor-
rected, it is discarded and treated as a loss.

The requirement that the solution be reliable, efficient, and
on demand implies that client robustness to missing packets is
crucial. For example, a client may sporadically be interrupted,
continuing the download several times before completion. Dur-
ing the interruptions the server will still be sending out a stream
of packets that an interrupted client will miss. The efficiency re-
quirement implies that the total length of all the packets such a
client has to receive in order to recover the file should be roughly
equal to the total length of the file.

III. THE DIGITAL FOUNTAIN SOLUTION

In this section, we outline an idealized solution that achieves
all the objectives laid out in the previous section for the chan-
nels of interest to us. In subsequent sections, we describe and



measure a new approach that implements an approximation to
this ideal solution that is superior to previous approaches.

A server wishes to allow a universe of clients to acquire
source data consisting of a sequence of k equal length pack-
ets. In the idealized solution, the server sends out a stream of
distinct packets, called encoding packets, that constitute an en-
coding of the source data. The server will transmit the encoding
packets whenever there are any clients listening in on the ses-
sion. A client accepts encoding packets from the channel until
it obtains exactly k packets. In this idealized solution, the data
can be reconstructed regardless of which k encoding packets the
client obtains. Therefore, once k encoding packets have been
received the client can disconnect from the channel. We assume
that in this idealized solution that there is very little processing
required by the server to produce the encoding of packets and by
the clients to recover the original data from k encoding packets.

We metaphorically describe the stream of encoding packets
produced by the server in this idealized solution as a digital
fountain. The digital fountain has properties similar to a foun-
tain of water for quenching thirst: drinking a glass of water, irre-
spective of the particular drops that fill the glass, quenches one’s
thirst. The digital fountain protocol has all the desirable prop-
erties listed in the previous section and functions over channels
with the characteristics outlined in the previous section.

IV. BUILDING A DIGITAL FOUNTAIN WITH ERASURE

CODES

An ideal way to implement a digital fountain is to directly use
an erasure code that takes source data consisting of k packets
and produces sufficiently many encoding packets to meet user
demand. Indeed, standard erasure codes such as Reed-Solomon
erasure codes have the ideal property that a decoder at the client
side can reconstruct the original source data whenever it receives
any k of the transmitted packets. But erasure codes are typically
used to stretch a file consisting of k packets into n encoding
packets, where both k and n are input parameters. We refer to
the ratio n=k as the stretch factor of an erasure code. While
this finite stretch factor limits the extent to which erasure codes
can approximate a digital fountain, a reasonable approximation
proposed by other researchers (e.g., [18], [22], [23], [25]), is
to set n to be a multiple of k, then repeatedly cycle through
transmission of then encoding packets. The limitation is that for
any pre-specified value of n, under sufficiently high loss rates a
client may not receive k out of n packets in one cycle. Thus
in lossy environments, a client may receive useless duplicate
transmissions before reconstructing the source data, decreasing
the channel efficiency. But in practice, our experimental results
indicate that this source of inefficiency is not large even under
very high loss rates and when n is set to be a small multiple of
k, such as n = 2k, the setting we use in the remainder of the
paper.

A more serious limitation regards the efficiency of encoding
and decoding operations. As detailed in subsequent sections,
the encoding and decoding processing times for standard Reed-
Solomon erasure codes are prohibitive even for moderate values
of k and n. The alternative we propose is to avoid this cost by
using the much faster Tornado codes [11]. As always, there is
a tradeoff associated with using one code in place of another.

The main drawback of using Tornado codes is that the decoder
requires slightly more than k of the transmitted packets to re-
construct the source data. This tradeoff is the main focus of our
comparative simulation studies that we present in Section VI.
But first, in Section V, we provide an in-depth description of the
way Tornado codes are constructed and their properties.

V. TORNADO CODES

In this section, we describe in some detail the construction of
a specific Tornado code and explain some of the general prin-
ciples behind Tornado codes. We first outline how these codes
differ from traditional Reed-Solomon erasure codes. Then we
give a specific example of a Tornado code based on [11], [12]
and compare its performance to a standard Reed-Solomon code.
For the rest of the discussion, we will consider erasure codes
that take a set of k source data packets and produce a set of `
redundant packets for a total of n = k + ` encoding packets all
of a fixed length P .

A. Theory

We begin by providing intuition behind Reed-Solomon codes.
We think of the ith source data packet as containing the value
of a variable xi, and we think of the jth redundant packet as
containing the value of a variable yj that is a linear combination
of the xi variables over an appropriate finite field. (For ease
of description, we associate each variable with the data from a
single packet, although in our simulations each packet may hold
values for several variables.) For example, the third redundant
packet might hold y3 = x1 + x2� + : : : + xk�

k�1, where �

is some primitive element of the field. Typically, the finite field
multiplication operations are implemented using table lookup
and the addition operations are implemented using exclusive-or.
Each time a packet arrives, it is equivalent to receiving the value
of one of these variables.

Reed-Solomon codes guarantee that successful receipt of any
k distinct packets enables reconstruction of the source data.
When e redundant packets and k� e source data packets arrive,
there is a system of e equations corresponding to the e redundant
packets received. Substituting all values corresponding to the k
received packets into these equations takes time proportional to
(k�e+1)e. The remaining subsystem has e equations and e un-
knowns corresponding to the source data packets not received.
With Reed-Solomon codes, this system has a special form that
allows one to solve for the unknowns in time proportional to e 2

via a matrix inversion and matrix multiplication.
The large decoding time for Reed-Solomon codes arises from

the dense system of linear equations used. Tornado codes are
built using random equations that are sparse, i.e. the average
number of variables per equation is small. This sparsity allows
substantially more efficient encoding and decoding. The price
we pay for much faster encoding and decoding is that k packets
no longer suffice to reconstruct the source data; instead slightly
more than k packets are needed. In fact, designing the proper
structure for the system of equations so that the number of addi-
tional packets and the coding times are simultaneously small is
a difficult challenge [11], [12].

For Tornado codes, the equations have the form y 3 = x1 �
x4 � x7, where � is bitwise exclusive-or. Tornado codes also
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Fig. 1. Structure of Tornado Codes

use equations of the form y53 = y3 � y7 � y13; that is, redun-
dant packets may be derived from other redundant packets. The
encoding time is dominated by the number of exclusive-or op-
erations in the system of equations.

The decoding process for Tornado codes uses two basic op-
erations. The first operation consists of replacing the received
variables by their values in the equations in which they ap-
pear. The second operation is a simple substitution rule. The
substitution rule can be applied to recover any missing vari-
able that appears in an equation in which that variable is the
unique missing variable. For example, consider again the equa-
tion y3 = x1�x4�x7. Suppose the redundant packet containing
y3 has been received, as well as the source data packets contain-
ing x1 and x7, but x4 has not been received. Then we can use the
above equation to solve for x4, again using only exclusive-or op-
erations. Using this substitution rule repeatedly, a single packet
arrival may allow us to reconstitute several additional packets,
as the effect of that arrival propagates. In practice, the number
of possible substitution rule applications remains minimal until
slightly more than k packets have arrived. Then often a single
arrival generates a whirlwind of substitutions that allow recov-
ery of all of the remaining source data packets. Hence the name
Tornado codes.

The decoding may stop as soon as enough packets arrive so
that the source data can be reconstructed. Note that Tornado
codes use only exclusive-or operations and avoid both the field
operations and the matrix inversion inherent in decoding Reed-
Solomon codes. The total number of exclusive-or operations
for decoding is at most the number used for encoding, and in
general is less.

As we have stated, to reconstruct the source data using a Tor-
nado code, it suffices to recover slightly more than k of the n
packets. We say that the decoding inefficiency is 1+� if (1+�)k

encoding packets are required to reconstruct the source data. For
Tornado codes the decoding inefficiency is not a fixed quantity
but depends on the packet loss pattern and the random choices
used to construct the code. This variance in decoding ineffi-
ciency is described in more detail in Section V-C.

The advantage of Tornado codes over standard codes is that
they trade off a small increase in decoding inefficiency for a
substantial decrease in encoding and decoding times. Recall
Reed-Solomon codes have encoding times proportional to k`P
and decoding times proportional to kxP . As a result, Reed-

Tornado Reed-Solomon

Decoding inefficiency 1 + � required 1
Encoding times (k + `) ln(1=�)P k`P

Decoding times (k + `) ln(1=�)P kxP

Basic operation XOR Field operations

TABLE I

PROPERTIES OF TORNADO VS. REED-SOLOMON CODES

Solomon codes can only be applied in practice when k and `
are relatively small. (Values used in [20], [?], [?], [?] have k

and ` ranging from 8 to 256.) In contrast, there are families
of Tornado codes that have encoding and decoding times that
are proportional to (k + `) ln(1=�)P with decoding inefficiency
1 + �. And in practice, the encoding and decoding times of Tor-
nado codes are orders of magnitude faster than Reed-Solomon
codes for large values of k and `. A summary comparing the
properties of Tornado codes and standard Reed-Solomon codes
is given in Table I.

In the next section, we present an example of a fast Tornado
code with decoding inefficiency 1 + � � 1:054 whose perfor-
mance we compare directly with Reed-Solomon codes.

B. An Example

We now provide a specific example of a Tornado code. It
is convenient to describe the association between the variables
and the equations in terms of a levelled graph, as depicted in
Figure 1. The nodes of the leftmost level of the graph correspond
to the source data. Subsequent levels contain the redundant data.

Each redundant packet is the exclusive-or of the packets held
in the neighboring nodes in the level to the left, as depicted on
the right side of Figure 1. The number of exclusive-or operations
required for both encoding and decoding is thus dominated by
the number of edges in the entire graph.

We specify the code by specifying the random graphs to place
between consecutive levels. The mathematics behind this code,
which we call Tornado Z, is described in [11], [12] and will not
be covered here. This code has 16,000 source data nodes and
16,000 redundant nodes. The code uses three levels; the number
of nodes in the levels are 16,000, 8,000 and 8,000 respectively.



The graph between the first two levels is the union of two
subgraphs, G1 and G2. The graph G1 is based on a truncated
heavy tail distribution. We say that a level has a truncated heavy
tail distribution with parameter D when the fraction of nodes of
degree i is D+1

Di(i�1)
for i = 2; : : : ; D+1. The graphG1 connects

the 16,000 source data nodes to 7,840 of the nodes at the second
level. The node degrees on the left hand side are determined
by the truncated heavy tail distribution, with D = 200. For
example, this means that there are (16;000)(201)

(200)(2)(1)
= 8,040 nodes

of degree 2 on the left hand side. Each edge is attached to a
node chosen uniformly at random from the 7,840 on the right
hand side.2 The distribution of node degrees on the right hand
side is therefore Poisson.

In the second graph G2, each of the 16,000 nodes on the left
has degree 2. The nodes on the right are the remaining 160
nodes at the second level, and each of these nodes has degree
200. The edges of G2 are generated by randomly permuting
the 32,000 edge slots on the left and connecting them in that
permuted order to the 160 nodes on the right. The graph G 2

helps prevent small cycles in G1 from halting progress during
decoding.

The second layer uses a graph with a specific distribution, de-
signed using a linear programming tool discussed in [11], [12].
The linear program is used to find graphs that have low decod-
ing inefficiency. In this graph, all of the 8,000 nodes on the left
have degree 12. On the right hand side there are 4,093 nodes of
degree 5; 3,097 nodes of degree 6; 122 nodes of degree 33; 472
nodes of degree 34; 1 node of degree 141; 27 nodes of degree
170; and 188 nodes of degree 171. The connections between
the edge slots on the left and right are selected by permuting the
edges slots on the left randomly and then connecting them to the
edge slots on the right.

In total there are 222,516 edges in this graph, or approxi-
mately 14 edges per source data node. The sparseness of this
graph allows for extremely fast encoding and decoding.

C. Performance

In practice, Tornado codes where values of k and ` are on
the order of tens of thousands can be encoded and decoded in
just a few seconds. In this section, we compare the efficiency of
Tornado codes with standard codes that have been previously
proposed for network applications [6], [20], [22], [23], [24],
[25]. The erasure code listed in Tables II and III as Cauchy [4]
is a standard implementations of Reed-Solomon erasure codes
based on Cauchy matrices. (We note that the Cauchy imple-
mentation, available at [8], is faster for larger values of k than
the implementation of Reed-Solomon codes based on Vander-
monde matrices by Rizzo [22].) The Tornado Z codes were
designed as described earlier in this section. The implementa-
tions were not carefully optimized, so their running times could
be improved by constant factors. All experiments were bench-
marked on a Sun 167 MHz UltraSPARC 1 with 64 megabytes
of RAM running Solaris 2.5.1. All runs are with packet length

2Notice that this may yield some nodes of degree 0 on the right hand side;
however, this happens with small probability, and such nodes can be removed.
Also, there may be multiple edges between pairs of nodes. This does not affect
the behavior of the algorithm dramatically, although the redistribution of such
multiple edges improves performance marginally.

Encoding Benchmarks
Reed-Solomon Codes Tornado Codes

SIZE Cauchy Tornado Z

250 KB 4.6 seconds 0.11 seconds
500 KB 19 seconds 0.18 seconds

1 MB 93 seconds 0.29 seconds
2 MB 442 seconds 0.57 seconds
4 MB 1717 seconds 1.01 seconds
8 MB 6994 seconds 1.99 seconds

16M Bytes 30802 seconds 3.93 seconds

TABLE II

COMPARISON OF ENCODING TIMES.

Decoding Benchmarks
Reed-Solomon Codes Tornado Codes

SIZE Cauchy Tornado Z

250 KB 2.06 seconds 0.18 seconds
500 KB 8.4 seconds 0.24 seconds

1 MB 40.5 seconds 0.31 seconds
2 MB 199 seconds 0.44 seconds
4 MB 800 seconds 0.74 seconds
8 MB 3166 seconds 1.28 seconds

16 MB 13629 seconds 2.27 seconds

TABLE III

COMPARISON OF DECODING TIMES.

P = 1KB. For all runs, a file consisting of k packets is encoded
into n = 2k packets, i.e., the stretch factor is 2.

For the decoding of the Cauchy codes, we assume that k=2
original file packets and k=2 redundant packets were used to
recover the original file. This assumption holds approximately
when a carousel encoding with stretch factor 2 is used, so that
roughly half the packets received are redundant packets.

Tornado Z has an average decoding inefficiency of 1.054, so
on average 1:054�k=2 original file packets and 1:054�k=2 redun-
dant packets were used to recover the original file. Our results
demonstrate that Tornado codes can be encoded and decoded
much faster than Reed-Solomon codes, even for relatively small
files.

We note that there is a small variation in the decoding ineffi-
ciency for decoding Tornado codes depending on which particu-
lar set of encoding packets are received. To study this variation,
we ran 10,000 trials using the Tornado Z code. In Figure 2, we
show the percentage of trials for which the receiver could not re-
construct the source data for specific values of the decoding in-
efficiency. For example, using Tornado Z codes with each node
representing one packet, a decoding inefficiency of 1:064 corre-
sponds to receiving 17; 024 = 1:064�16; 000packets. Over 90%
of the clients could reconstruct the source data before receiving
this many packets.

In our trials the average decoding inefficiency was 1.0536, the
maximum reception inefficiency was 1.10, and the standard de-
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Fig. 2. Decoding inefficiency variation over 10,000 trials of Tornado Z.

viation was 0.0073. For all 10,000 trials the same graph was
used; this graph was not specially chosen, but was generated
randomly as described in Section V-B. Hence one might achieve
better performance by testing various random graphs for perfor-
mance before settling on one. Our tests suggest that the perfor-
mance given in Figure 2 is representative.

VI. SIMULATION COMPARISONS

From the previous section, it is clear that using Reed-Solomon
erasure codes to encode over large files for bulk data distribution
has prohibitive encoding and decoding overhead. But another
approach, described in the introduction, is the method of inter-
leaving suggested in [20], [22], [23], [24]. Interleaved codes are
constructed as follows: suppose K + L encoding packets are to
be produced from K file packets. Partition the K file packets
into blocks of length k, so that there are B = K=k blocks in
total. Stretch each block of k packets to an encoding block of
k+` packets using a standard erasure code by adding ` = kL=K

redundant packets. Then, form the encoding of length K + L
by interleaving the encoding packets from each block, i.e., the
encoding consists of sequences ofB packets, each of which con-
sist of exactly one packet from each block.

The choice of the value of the parameter k for interleaved
codes is crucial. To optimize encoding and decoding speed of
the interleaved codes, k should clearly be chosen to be as small
as possible. But choosing k to be very small defeats the purpose
of using encoding, since any redundant packet that arrives can
only be used to reconstruct a source data packet from the same
block. Moreover, redundant packets that arrive for data blocks
that have already been reconstructed successfully do not benefit
the sender.

To explain this in more detail, let us say that a block is full
from the client viewpoint when at least k distinct transmitted
packets associated with that block have been received. The en-
tire file can only be decoded by the client when all blocks are
full. (Note however that some of the decoding work can poten-
tially be done in the background while packets arrive; the same
also holds for Tornado codes.) The phenomenon that arises
when k is relatively small is illustrated in Figure 3; while wait-
ing for the last few blocks to fill, the receiver may receive many
packets from blocks that have already been reconstructed suc-

k

B blocks

= source data

= redundancy

Fig. 3. Waiting for the last blocks to fill...

cessfully. These useless packets contribute directly to the de-
coding inefficiency. To summarize, the choice of the value of
k for interleaved codes introduces a tradeoff between decoding
speed and decoding inefficiency.

To compare various protocols, we compare the decoding in-
efficiency and decoding speed at each receiver. Recall that the
decoding inefficiency is 1+� if one must obtain (1+�)k distinct
packets in order to decode the source data. For Tornado codes,
there is some decoding inefficiency based on how the codes are
constructed. For interleaved codes, decoding inefficiency arises
because in practice one must obtain more than k packets to have
enough packets to decode each block. We emphasize that for
interleaved codes the decoding inefficiency is a random variable
that depends on the loss rate, loss pattern, and the block size.
The tradeoff between decoding inefficiency and coding time for
interleaved codes motivates the following set of experiments.

� Suppose we choose k in the interleaved setting so that the
decoding inefficiency is comparable to that of Tornado Z. How
does the decoding time compare?
� Suppose we choose k in the interleaved setting so that the
decoding time is comparable to that of Tornado Z. How does the
decoding inefficiency compare?

In our initial simulations, we assume probabilistic loss pat-
terns in which each transmission to each receiver is lost inde-
pendently with a fixed probability p. We emphasize that using
bursty loss models instead of this uniform loss model would not
impact our results for Tornado code performance; only the over-
all loss rate is important. This is because when using Tornado
codes we compute the entire encoding ahead of time and send
out packets in a random order from the source end. Therefore,
any loss pattern appears equivalent to a uniform loss pattern on
the receiver end. Note that this randomization at the sender end
may introduce latency, and therefore this Tornado code approach
may not be appropriate for some applications such as real-time
interactive video.

The choice of the uniform model does however impact the
performance results of the interleaved codes, which (unless the
same randomization of the transmission order is used) are highly
dependent on the loss pattern. In particular, we would expect in-
terleaved codes to have slightly better performance under bursty
losses. We therefore also provide results from trace-driven sim-
ulations of the Internet to demonstrate the relatively small effect
of burstiness on interleaved code performance.
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Fig. 4. Comparison of decoding inefficiency for codes with comparable decoding times.

Speedup factor for Tornado Z
erasure probabilities

SIZE 0.01 0.05 0.10 0.20 0.50

250 KB 1.37 2.05 5.55 11.1 11.1
500 KB 2.29 5.51 8.33 16.7 33.3

1 MB 4.12 10.3 17.1 25.8 51.6
2 MB 6.34 16.9 26.2 48.4 96.8
4 MB 7.87 22.3 34.6 62.7 115
8 MB 11.1 28.2 46.9 80 182

16 MB 14.2 34.9 56.4 100 212

TABLE IV

SPEEDUP OF TORNADO Z CODES OVER INTERLEAVED CODES WITH

COMPARABLE EFFICIENCY.

A. Equating Decoding Efficiency

Our first simulation compares the decoding time of Tornado Z
with an interleaved code with decoding inefficiency comparable
to those of Tornado Z. In Section V, we determined experimen-
tally that Tornado Z codes have the property that the decoding
inefficiency is greater than 1:076 less than 1% of the time. In
Table IV, we present the ratio between the running time of an
interleaved code for which k is chosen so that this property is
also realized and the running time of Tornado Z. Of course, this
ratio changes as the loss probability and file size change.

We explain how the entries in Table IV are derived. To com-
pute the running time for interleaved codes, we first use simula-
tions to determine for each loss probability value the maximum
number of blocks the source data can be split into while still
maintaining a decoding inefficiency less than 1:076 for less than
1% of the time. (For example, a two megabyte file consisting of
2000 one kilobyte packets can be split into at most eleven blocks
while maintaining this property when packets are lost with prob-
ability 0:10.) We then calculate the decoding time per block, and
multiply by the number of blocks to obtain the decoding time for
the interleaved code. With a stretch factor of two, one half of all
packets injected into the system are redundant encoding packets
and the other half are source data packets. Therefore, in comput-
ing the decoding time per block, we assume that half the pack-
ets received are redundant encoding packets. Based on the data

previously presented in the Cauchy codes column of Table III,
we approximate the decoding time for a block of k source data
packets by k2=31250 seconds. To compute the running time for
Tornado Z, we simply use the decode times for Tornado Z as
given earlier in Table III.

As an example, suppose the encoding of a 16 MB file is trans-
mitted over a 1 Mbit/second channel with a loss rate of 50%. It
takes just over 4 minutes to receive enough packets to decode
the file using either Tornado Z or an interleaved code (with the
desired decoding inefficiency guarantee), but then the decoding
time is almost 8 minutes for the interleaved code compared with
just over 2 seconds for Tornado Z. Comparisons for encoding
times yield similar results. We note that by using slightly slower
Tornado codes with less decoding inefficiency, we would actu-
ally obtain even better speedup results at high loss rates. This
is because interleaved codes would be harder pressed to match
stronger decoding guarantees.

B. Equating Decoding Time

Our second set of simulations examines interleaved codes that
have comparable decoding times to Tornado Z. Cauchy codes
with block length k = 20 are roughly equivalent in speed to the
Tornado Z code. We also compare with a block length k = 50,
which is slower but still reasonable in practice.

Using these block sizes, we now study the maximum decod-
ing inefficiency observed as we scale to a large number of re-
ceivers. The sender carousels through a two megabyte encoding
of a one megabyte file, while receivers asynchronously attempt
to download it. We simulate results for the case in which packets
are lost independently and uniformly at random at each receiver
at rates of 10% and 50%. The 10% loss rates are representative
of congested Internet connections, while the 50% loss rates are
near the upper limits of what a mobile receiver with poor con-
nectivity might reasonably experience. The results we give can
be interpolated to provide intuition for performance at interme-
diate rates of loss. For channels with very low loss rates, such as
the 1% loss rates studied in [20], interleaved codes and Tornado
have generally comparable performance.

Figure 4 shows for different numbers of receivers the worst
case decoding efficiency experienced for any of the receivers
averaged over 100 trials. In these figures, p refers to the proba-
bility a packet is lost at each receiver. Since the leftmost point
in each subfigure is for the case of one receiver, this point is also
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Fig. 5. Comparison of decoding inefficiency as file size grows.

just the average decoding inefficiency. The interesting feature
of this figure is how the worst case decoding inefficiency grows
with the number of receivers.

For packet loss rates of 10% and a block size of k = 50, the
average inefficiency of interleaved codes is comparable to that
of Tornado Z. But as packet loss rates increase, or if a smaller
block size is used, the inefficiency of interleaved codes rises dra-
matically. Also, the inefficiency of the worst-case receiver does
not scale with interleaved codes as the receiver size grows large.
Tornado codes exhibit more robust scalability and better toler-
ance for high loss rates.

C. Scaling to Large Files

Our next experiments demonstrate that Tornado codes also
scale better than an interleaved approach as the file size grows
large. This is due to the fact that the number of packets a client
must receive to reconstruct the source data when using inter-
leaving grows super-linearly in the size of the source data. (This
is the well-known “coupon collector’s problem.”) In contrast,
the number of packets the receivers require to reconstruct the
source data using Tornado codes grows linearly in the size of
the source data, and in particular the decoding inefficiency does
not increase as the file size increases.

The effect of this difference is easily seen in Figure 5. In this
case both the average decoding inefficiency and the maximum
decoding inefficiency grow with the length of the file when us-
ing the interleaving. This effect is completely avoided by using
Tornado codes.

D. Trace-Driven Simulations

To study the impact of bursty loss patterns on the relative per-
formance of Reed-Solomon and Tornado code approaches, we
perform a similar comparison using publicly available MBone
trace data collected by Yajnik, Kurose, and Towsley [26]. In
these traces, between six and twenty clients from the US and
abroad subscribed to MBone broadcasts each of roughly an hour
in length and reported which packets they received. Clients ex-
perienced packet loss rates ranging from less than 1% to well
over 20% over the course of these broadcasts.

To sample loss patterns from these traces, we simply chose
a random starting point for each broadcast, and then used the
trace data to generate packet loss patterns for each receiver in the

Decoding Inefficiency, 146 Receivers, 
Trace Data

1

1.1

1.2

1.3

1.4

1.5

100 1000 10000

File Size, KB

D
ec

od
in

g 
In

ef
fic

ie
nc

y

Tornado Z, Avg.

Interleaved, k = 50, Avg.

Interleaved, k = 20, Avg.

Fig. 6. Comparison of decoding inefficiency on trace data.

broadcast beginning at that time. We then simulated download-
ing files of various lengths using interleaving and using Tornado
codes with these loss patterns. Averaging over 146 loss patterns
generated from 15 broadcasts, we plot the average decoding in-
efficiency for various file sizes in Figure 6.

The average loss rate over the randomly chosen trace seg-
ments we selected was just over 11%. In this trace data, there
was considerable variance in the loss rate; some clients received
virtually every packet, others experienced large burst losses over
significant periods of time. While this trace data is limited
in scope, the Tornado codes maintain superior decoding inef-
ficiency in the presence of high burst losses present in this data
set. In fact, the results appear very similar to that in Figure 5
when p = 0:1, suggesting that the bursty loss pattern has only a
small effect.

VII. IMPLEMENTATION OF A RELIABLE DISTRIBUTION

PROTOCOL USING TORNADO CODES

In this section, we describe an experimental system for dis-
tributing bulk data to a large number of heterogeneous receivers
who may access the data asynchronously. Our implementation
is designed for the Internet using a protocol built on top of IP
Multicast. We have drawn on existing techniques to handle re-
ceiver heterogeneity and congestion control using layered mul-
ticast [15], [18], [25]. We emphasize that the purpose of de-
veloping this system is to demonstrate the feasibility of using
Tornado codes in actual systems, and not to create a completely



functional multicast protocol for deployment.
We expect that Tornado codes will also prove useful in other

environments besides the Internet, such as satellite or wireless
based systems. In these settings, different channel characteris-
tics would suggest different approaches for congestion control
and tolerating receiver heterogeneity. The Tornado code ap-
proach to bulk data distribution we apply, however, would re-
main essentially the same, even under varying end-to-end band-
widths and packet loss rates.

We first describe the design of our multicast protocol. The
two main issues are the use of layered multicast and the ap-
proach the client uses to decode the message. Then we describe
the experimental setup and performance results of our system.

A. Layering Across Multiple Multicast Groups

The congestion control approach we employ follows the lead
of other authors who advocate layered multicast [15], [18], [25].
The main idea underlying this approach is to enable the source
to transmit data across multiple multicast groups, thereby allow-
ing the receivers to subscribe to an appropriate subset of these
layers. Of course, practical considerations warrant keeping the
number of multicast groups associated with a given source to
a minimum. A receiver’s subscription level is based on factors
such as the width of its bottleneck link to the source and network
congestion. The basic ideas common to the proposed layered
schemes are:
� The server transmits data over multiple layers, where the lay-
ers are ordered by increasing transmission rate.
� The layers are cumulative in that a receiver subscribing to
layer i also subscribes to all layers beneath it. We say that a re-
ceiver subscribes to level iwhen it subscribes to layers 0 through
i.
For example, in our implementation, we use geometrically in-
creasing transmission rates: Bi = 2

i�1 is the rate of the ith
layer. Thus, a receiver at subscription level i would receive
bandwidth proportional to 2Bi, for i � 1. The protocol we use
is based on the scheme described in recent work of Vicisano,
Rizzo and Crowcroft [25] that proposes the following two novel
ideas, summarized here briefly:
� Congestion control is achieved by the use of synchronization
points (SP’s) that are specially marked packets in the stream.
A receiver can attempt to join a higher layer only immediately
after an SP, and keeps track of the history of events only from the
last SP. The rate at which SP’s are sent in a stream is inversely
proportional to the bandwidth: lower bandwidth receivers are
given more frequent opportunities to move up to higher levels.
� Instead of explicit join attempts by clients, the server gener-
ates periodic bursts during which packets are sent at twice the
normal rate on each layer. This has the effect of creating net-
work congestion conditions similar to those that receivers would
experience following an explicit join. Receivers use a packet
loss event as an indication of congestion. So if a receiver wit-
nesses no packet losses during the burst, it adds a layer at the
next SP. Conversely, receivers drop to a lower subscription level
whenever a packet loss occurs outside of a burst preceding a
synchronization point.

Both the sending of SP’s and burst periods are driven by the
sender, with the receivers reacting appropriately. The attrac-

tive features of this approach are that receivers do not need to
provide congestion control feedback to the source and receivers
need not coordinate join attempts to prevent disruption to other
receivers. These features are particularly important in the con-
text of a digital fountain in which receiver-to-source and inter-
receiver communication are undesirable. Moreover, the work of
[25] demonstrates how to set transmission rates and the interar-
rival time between SP’s so that the resulting congestion control
policy is TCP-friendly, and shares bandwidth in a comparable
way to point-to-point TCP connections. We refer the reader to
[25] for further details.

B. Scheduling Packet Transmissions Across Multiple Multicast
Groups

As described earlier, a receiver at level i subscribes to all lay-
ers 0 through i. Therefore, it is important to schedule packet
transmissions carefully across the multiple layers, so as to mini-
mize the number of duplicate packets that a client receives. The
stretch factor c limits the number of distinct packets that can be
transmitted, and therefore also has a strong effect on the number
of duplicates a client receives, especially in the presence of high
packet loss rates. Of course, using a large stretch factor pro-
vides more flexibility, but it slows decoding time and increases
the space requirements for decoding.3 For these reasons, we typ-
ically choose a stretch factor c = 2 as compared to c = 8 used
in [23], [?], although using larger stretch factors with Tornado
codes is certainly feasible. We find that this choice is suitable in
practice because we use a packet transmission scheme that has
the following property:

One Level Property: If a receiver remains at a fixed subscrip-
tion level throughout the transmission and packet loss remains
sufficiently low, it can reconstruct the source data before receiv-
ing any duplicate transmissions. Specifically, if the loss rate is
below below 1�

1+�
c

, where 1 + � is the reception inefficiency
of the Tornado code, then in one cycle a receiver obtains the
(1 + �)n packets necessary to decode.

Recently, Bhattacharyya et al. show that a general transmis-
sion scheme exists that realizes the one level property for any
arbitrary set of layered transmission rates [3]. For example, Ta-
ble V demonstrates a simple sending pattern for the rate organi-
zation previously described with 4 layers, 4 source data packets,
and a stretch factor of 2.

Our sending pattern satisfies the One Level Property. In fact,
the sender transmits a permutation of the entire encoding both
to each multicast layer and to each cumulative subscription level
before repeating a packet. Receivers that change their subscrip-
tion level over time, however, do not witness this ideal behavior.
While we show in Section VII-D that the reception inefficiency
remains low even when receiver subscription levels change fre-
quently, optimizing properties of the schedule further for this
scenario remains an open question.

C. Reconstruction at the Client

As detailed in the previous subsection, the client is respon-
sible for observing SPs and modifying its subscription level as

3The memory required for decoding Tornado codes is proportional to the
length of the encoding, not to the size of the source data.



Bandwidth Packets sent during
Layer per Round Rd 1 Rd 2 Rd 3 Rd 4 Rd 5 Rd 6 Rd 7 Rd 8

3 4 0-3 4-7 0-3 4-7 0-3 4-7 0-3 4-7
2 2 4-5 0-1 6-7 2-3 4-5 0-1 6-7 2-3
1 1 6 2 4 0 7 3 5 1
0 1 7 3 5 1 6 2 4 0

TABLE V

PACKET TRANSMISSION SCHEME FOR 4 LAYERS

congestion warrants. The other activity that the client must per-
form is the reconstruction of the source data. There are two ways
to implement the client decoding protocol. The first is an incre-
mental approach in which the client performs preliminary de-
coding operations after each packet arrives. This approach leads
to some redundant computation: reconstructed source data may
later arrive intact. Moreover, there may be substantial overhead
in processing individual packets immediately on arrival. A sec-
ond, patient approach that reduces these effects is to wait until
a fixed number of packets arrive from which it is likely that the
source can be reconstructed, based on statistical observations. If
the decoding cannot be completed at this time, then additional
packets may be processed individually or in small groups. While
the incremental approach has the benefit of enabling some de-
coding computation to be overlapped with packet reception, we
found the patient approach to be simpler to implement in prac-
tice, with little loss of decoding speed. In our final implemen-
tation we wait until 1:055n packets arrive, attempt to decode,
and then process additional packets individually as needed until
decoding is successful.

D. Experimental Setup and Results

Now we turn to measurements of the efficiency of our experi-
mental system. First, we clarify the two sources of inefficiency.
Recall that the decoding inefficiency, 1 + � = �c, captures the
inefficiency due specifically to the use of Tornado codes. It is
defined as

�c =
# of distinct packets received prior to reconstruction

# of source data packets
:

There is, however, another possible source of inefficiency: a re-
ceiver could obtain duplicate packets. The distinctness ineffi-
ciency, �d, captures the loss in efficiency caused by receiving
duplicate packets. This can occur either by cycling through the
carousel under exceedingly high loss rates or by changing the
receiver subscription layer as described in Section VII-B. It is
defined as

�d =
Total # of packets received

# of distinct packets received
:

Combining these two effects yields the reception inefficiency, �.
It is defined as

� =
Total # of packets received prior to reconstruction

# of source data packets
:

It is clear that � = �c�d.

The experimental results measure our prototype implementa-
tion. Besides testing the layered protocol we have described, we
also test a single layer protocol. That is, we also measure the re-
ception inefficiency when the server transmits the file on a single
multicast group at a fixed rate. These results allow us to focus
on the efficiency of the packet transmission scheme independent
of the layering scheme for congestion control. The server runs
two threads: a UDP unicast thread that provides various control
information such as multicast group information and file length
to the client and a multicast transmission thread. The clients for
both protocols connect to the server’s known UDP port for con-
trol information and on receipt of the information, subscribe to
the appropriate multicast groups.

Our test source data consisted of a Quicktime movie (a clip
available from www.nfl.com) with size slightly over two
megabytes. The encoding algorithm used a stretch factor of
c = 2 to produce 8264 packets of size 500 bytes. The packets
were additionally tagged with 12 bytes of information (packet
index, serial number and group number) to give a final packet
size of 512 bytes. The server and clients were on three dif-
ferent subnets, located at Berkeley, CMU and Cornell. There
were 16 hops on the path from Berkeley to CMU, and the bot-
tleneck bandwidth (obtained by using mtrace and pathchar [9])
was 8 Mb/s with an RTT of 60 ms. There were 17 hops on the
path from Berkeley to Cornell, and the bottleneck bandwidth
was 9.3 Mb/s with an RTT of 87 ms. Base layer bandwidth
was set at rates ranging from 64 Kb/sec to 512 Kb/sec. We ran
experiments with the server both at Berkeley and at CMU and
with the clients located at the other two subnets. Locating the
server at CMU tended to generate higher packet loss rates for the
same transmission bandwidth. The machines used at CMU and
Berkeley were 167 MHz UltraSPARC-1’s running Solaris 2.5.1.
The client at Cornell ran on a 60 MHz Sparc. When running the
layered protocol, we used 4 layers.

In our initial experiments, in some cases we witnessed loss
rates over the course of the transmission of over 20% – rates
that are admittedly far higher than the congestion control tech-
niques of [25] were intended to handle. To generate even higher
loss rates that might arise in other environments, such as mobile
wireless networks, the base layer rate was set artificially high,
causing a router along the path to drop packets persistently.

The data from the two sets of experiments are shown in Fig-
ure 7. As seen from the graphs for the single layered case, for
packet losses of less than 50% , the distinctness inefficiency is
almost always 1. This is to be expected because of the One Level
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Fig. 7. Experimental Results of the Prototype

Property.4 Thus, for low loss rates, the reception inefficiency is
effectively the decoding inefficiency, which in our example was
roughly 1:07 on average. (This decoding inefficiency is slightly
higher than for Tornado Z because a different code was used
in these experiments, and because we wait until at least 1:055n
packets arrive before trying to decode.) We further observe that
the transmission scheme is robust even under severe loss rates -
at nearly a 70% loss rate, the reception inefficiency is generally
below 1:4. Of course, if one had reason to suspect such exces-
sively high loss rates ahead of time, one could choose a larger
stretch factor, at the expense of proportionally higher encoding
and decoding times.

Figure 7 also shows experimental data for the multilayered
case. We observe that the use of multiple layers for conges-
tion control increases the distinctness inefficiency. This is natu-
ral as switching among subscription levels can cause the client
to receive packets that had already been obtained at other sub-
scription levels. For high loss rates, the distinctness inefficiency
remained low because receivers generally subscribed only to the
base layer. An interesting direction we intend to pursue further
is to study how the reception efficiency varies with the rates of
change in receiver subscription level.

VIII. CONCLUSION

The introduction of Tornado codes yields significant new pos-
sibilities for the design of reliable multicast protocols. To ex-

4Note that it is possible to have a cumulative loss rate that is less than 50% but
in which losses initially are higher than 50% in the first cycle so that the client
receives some duplicates. This is precisely what happened for the outlying point
at 35% packet loss in the single layer distinctness inefficiency graph.

plore these possibilities, we formalized the notion of an ideal
digital fountain and explained how Tornado codes can yield a
much closer approximation to a digital fountain than previous
systems based on standard Reed-Solomon erasure codes. Our
prototype multicast data distribution system demonstrates that
simple protocols using Tornado codes are effective in practice.
It would be useful to test a similar system with a large number
of users to fully demonstrate the effectiveness of our approach.

Given that we can closely approximate a digital fountain with
Tornado codes, we conclude with other possible applications for
such an encoding scheme. One application is dispersity routing
of data from endpoint to endpoint in a packet-routing network.
With packets generated by a digital fountain, the source can in-
ject packets along multiple paths in the network. Those packets
that experience congestion are delayed, but the destination can
recover the data once a sufficient number of packets arrive, ir-
respective of the paths they took. This application dates back
to the seminal works on dispersity routing by Maxemchuk [13],
[14] and information dispersal by Rabin [21]. Both suggested
using standard erasure codes. We expect Tornado codes will
lead to improved practical dispersity routing schemes.

Another application for which the Tornado code approxima-
tion might be useful arises in the context of mirrored data. Cur-
rently, to minimize response time, clients search for a lightly
loaded mirror site on an uncongested path. If the sources use
ideal digital fountains to transmit the data, clients can access
multiple sources simultaneously, and aggregate all the packets
they receive to recover the data efficiently. The problem with
a Tornado code solution is that if the stretch factor is small,
one receives duplicate packets frequently; if the stretch factor



is large, the space and time requirements for decoding become
prohibitive. We are currently studying how parameters may be
set appropriately to yield a viable solution.

REFERENCES

[1] S. Acharya, M. Franklin, and S. Zdonik, “Dissemination Based Data De-
livery Using Broadcast Disks,” IEEE Personal Communications, Decem-
ber 1995, pp. 50-60.

[2] A. Bestavros. “AIDA-based real-time fault-tolerant broadcast disks.” In
Procedings of the 16th IEEE Real-Time System Symposium, 1996.

[3] S. Bhattacharyya, J. F. Kurose, D. Towsley, and R. Nagarajan, “Efficient
Rate-Controlled Bulk Data Transfer using Multiple Multicast Groups”, In
Proc. of INFOCOM ’98, San Francisco, April 1998.
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