
1

Introduction to Routing

CSE 561 Lecture 4, Spring 2002.
David Wetherall

djw // CSE 561, Spring 2002, with credit to savage L4.2

Looking back: concepts you should be
comfortable with �

• Protocols and layering, the end-to-end argument
• Circuit/packet switching; virtual circuits and datagrams
• Internetworking and packet fragmentation
• Timeouts and retransmissions
• Sliding windows and flow control
• Connection establishment
• Checksums and Forward Error Correction

2

djw // CSE 561, Spring 2002, with credit to savage L4.3

The essence of routing

How do I get
there from here?

djw // CSE 561, Spring 2002, with credit to savage L4.4

Overview

• Taxonomy of kinds of forwarding/routing

• Intra-domain routing (Review)
– Distance Vector
– Link State

• Inter-domain routing
– Start on BGP; defer Policy until next time

3

djw // CSE 561, Spring 2002, with credit to savage L4.5

What does a router do?

• Forwarding
– Move packet from input link to the appropriate output link

• “Next hop” only path to ultimate destination
– Purely local computation
– Must go be very fast (executed for ever packet)

• Routing
– Doing work so you’re sure that the “next hop” actually leads to

the destination
– Distributed computation and communication
– Can go slower (only important when topology changes)

djw // CSE 561, Spring 2002, with credit to savage L4.6

Kinds of forwarding

• Source routing
– Complete path in packet

• Virtual circuits
– Set up path out-of-band and store path identifier in routers
– Local path identifier in packet

• Global address lookup
– Router looks up address in forwarding table
– Forwarding table contains (address, next-hop) tuples

4

djw // CSE 561, Spring 2002, with credit to savage L4.7

Source routing

• Packet contains complete ordered path information
– I.e. node A then D then X then J…

• Host computes path

• Router looks up next hop in packet header
• Strips next hop and forwards remaining packet

djw // CSE 561, Spring 2002, with credit to savage L4.8

Source routing evaluation

• Strengths
– Very fast to lookup next hop
– Very flexible (every packet can take different path)

• Weaknesses
– Host must know global topology and detect failures
– Variable packet header up to max path

• In practice
– Ad hoc networks (DSR)
– Multicomputer (Paragon) and SAN networks (Myrinet)
– Minimal Internet support (LSR, SSR)

5

djw // CSE 561, Spring 2002, with credit to savage L4.9

Virtual circuits

• Setup path out-of-band
– Enter (input id, output id, next hop) entry into each router on

path
– Provide initial local input id to sending host as path id

• Forwarding
– Send packet with path id
– Router looks up input, swaps for output, forwards on next hop
– Repeat until reach destination

djw // CSE 561, Spring 2002, with credit to savage L4.10

Virtual circuit evaluation

• Strengths
– Table lookup for forwarding (why faster than IP lookup?)
– Flexible (one path per flow)

• Weaknesses
– Requires connection setup before can send
– Complicated to deal with failures

• In practice
– ATM: fixed VC identifiers and separate signaling code
– MPLS: ATM meets the IP world (why? traffic engineering)

6

djw // CSE 561, Spring 2002, with credit to savage L4.11

Global address lookup

• All addresses are globally known
• Host sends packet with destination address in header
• Router maintains forwarding table

– (Address, next-hop) tuple
– Lookup address, send packet to next-hop link

• Distributed routing protocol used to populate tables

djw // CSE 561, Spring 2002, with credit to savage L4.12

Global address evaluation

• Strengths
– Handles failures well; No path state, so any router can forward any

packet
– No connection setup required

• Weaknesses
– Inflexible

• Usually all packets to destination follow same path
– More state

• Must store information on all destinations even if never used
– Forwarding lookup more expensive

• This is a whole lecture in itself; not now
• In practice

– IP routing

7

djw // CSE 561, Spring 2002, with credit to savage L4.13

Recap: Classless IP addressing

• Routes represented by tuple (network prefix/mask)
– Allows arbitrary allocation between network and host address
– e.g. 10.95.1.2/8: 10 is network and remainder (95.1.2) is host

• Route lookup: longest prefix match
– For a given destination, find entry in route table that matches

the most number of bits (i.e. with the largest mask)
– Example: 128.95.4.1

• One route for 128.95.0.0/16 (CMU)
• One route for 128.95.4.0/24 (CMU SCS)

Network Host

Prefix Mask=# significant bits representing prefix

djw // CSE 561, Spring 2002, with credit to savage L4.14

Intra-domain routing
• Routing within a network/organization
• A single administrative domain

• Overall goals
– Adapt quickly to failures or topology changes
– Optimize use of network resources
– Provide intra-network connectivity
– Scale to large networks

• Problem statement
– Network is a directed graph G=(V,E)
– Routers are vertices, links are edges labeled with some metric

• For simplicity ignore hosts, they are part of each V
– For each V, find the shortest path to every other V

8

djw // CSE 561, Spring 2002, with credit to savage L4.15

Quick aside: host routing

• Generally, hosts are single-homed
– Connected to a single network

• Don’t need to understand topology
• Can simply have a default route

– All non-local traffic sent to default next hop (a router)
– Router maintains “default-free” forwarding table (or knows

how to get to a router that does)

djw // CSE 561, Spring 2002, with credit to savage L4.16

Three approaches

• Static
– Type in the right answers and hope they are always true

• Distance vector
– Tell your neighbors when you know about everyone

• Link state
– Tell everyone what you know about your neighbors

9

djw // CSE 561, Spring 2002, with credit to savage L4.17

Distance Vector routing (Review)

• Assume
– Each router knows own address & cost to reach neighbors

• Goal
– Calculate routing table containing next-hop information for

every destination at each router

• Distributed Bellman-Ford algorithm
– Each router maintains a vector of costs to all destinations

• Initialize neighbors with known cost, others with infinity
– Periodically send copy of distance vector to neighbors
– On reception of a vector

• If neighbor’s path to a destination is shorter, switch to it

djw // CSE 561, Spring 2002, with credit to savage L4.18

Initial conditions

1

7

8

2

2

1

A

E

B C

D

02∞∞∞∞81E

202∞∞∞∞∞∞∞∞D

∞∞∞∞201∞∞∞∞C

8∞∞∞∞107B

1∞∞∞∞∞∞∞∞70A

EDCBA

Distance to NodeInfo at
node

10

djw // CSE 561, Spring 2002, with credit to savage L4.19

E receives D�s vector

1

7

8

2

2

1

A

E

B C

D

02481E

202∞∞∞∞∞∞∞∞D

∞∞∞∞201∞∞∞∞C

8∞∞∞∞107B

1∞∞∞∞∞∞∞∞70A

EDCBA

Distance to NodeInfo at
node

I�m 2 from C, 0 from
D and 2 from E

D is 2 away, 2+2< ∞∞∞∞,
so best path to C is 4

djw // CSE 561, Spring 2002, with credit to savage L4.20

A receives B�s vector

1

7

8

2

2

1

A

E

B C

D

02481E

202∞∞∞∞∞∞∞∞D

∞∞∞∞201∞∞∞∞C

8∞∞∞∞107B

1∞∞∞∞870A

EDCBA

Distance to NodeInfo at
node

I�m 7 from A, 0
from B, 1 from X &

8 from D

B is 7 away, 1+7< ∞∞∞∞
so best path to C is 8

11

djw // CSE 561, Spring 2002, with credit to savage L4.21

A receives E�s vector

1

7

8

2

2

1

A

E

B C

D

02481E

202∞∞∞∞∞∞∞∞D

∞∞∞∞201∞∞∞∞C

8∞∞∞∞107B

13570A

EDCBA

Distance to NodeInfo at
node

I�m 1 from A, 8
from B, 4 from C, 2
from D & 0 from E

E is 1 away, 4+1<8 so
C is 5 away, 1+2< ∞∞∞∞

so D is 3 away

djw // CSE 561, Spring 2002, with credit to savage L4.22

Final state

1

7

8

2

2

1

A

E

B C

D

02451E

20233D

42015C

53106B

13560A

EDCBA

Distance to NodeInfo at
node

12

djw // CSE 561, Spring 2002, with credit to savage L4.23

View from a node (B)

1

7

8

2

2

1

A

E

B C

D
5881E

310103D

112125C

21306B

6970A

CEAA

Next hop

Dest

djw // CSE 561, Spring 2002, with credit to savage L4.24

Link failure

1

7

8

2

2

1

A

E

B C

D

0104512E

20233D

42018C

53107B

1210870A

EDCBA

Distance to NodeInfo at
node

� A marks distance to E as x, and tells B
� E marks distance to A as x, and tells B and D
� B and D recompute routes and tell C, E and E
� etc� until converge

13

djw // CSE 561, Spring 2002, with credit to savage L4.25

Link State routing (Review)

• Same goal, different approach
• Two phases:

– Reliable flooding
• Tell all routers what you know about your local topology

– Path calculation (Dijkstra’s algorithm)
• Each router computes best path over complete network

djw // CSE 561, Spring 2002, with credit to savage L4.26

Reliable flooding

• Goal: tell everyone what you know about local topology

• Periodically send link state packets (LSPs) on all links
– LSP contains [node, neighbors, costs, sequence number]

• If node X receives an LSP from node Y over link Q
– If it is the “newest” LSP from Y that X has seen then save it in

local link state database & forward LSP on all links except Q
– Otherwise drop LSP

• Use explicit ACKs and retransmits to make flooding
reliable

• Each LSP will travel at most once over each link

14

djw // CSE 561, Spring 2002, with credit to savage L4.27

Flooding example

• LSP generated by X at T=0
• Nodes become orange as they receive it

X A

C B D

X A

C B D

X A

C B D

X A

C B D

T=0 T=1

T=2 T=3

djw // CSE 561, Spring 2002, with credit to savage L4.28

Dijkstra�s Shortest Path Tree (SPT)
algorithm

• Graph algorithm for single-source shortest path tree

S ! {}
Q ! <all nodes keyed by distance>
While Q != {}

u ! extract-min(Q)
S ! S plus {u}
for each node v adjacent to u

�relax� the cost of v

! u is done

15

djw // CSE 561, Spring 2002, with credit to savage L4.29

Example � Step 2

10

2 3

5

2

1

4 6

7

90

10

5

djw // CSE 561, Spring 2002, with credit to savage L4.30

Example � Step 3

10

2 3

5

2

1

4 6

7

90

8

5 7

14

16

djw // CSE 561, Spring 2002, with credit to savage L4.31

Example � Step 4

10

2 3

5

2

1

4 6

7

90

8

5 7

13

djw // CSE 561, Spring 2002, with credit to savage L4.32

Example � Step 5

10

2 3

5

2

1

4 6

7

90

8

5 7

9

17

djw // CSE 561, Spring 2002, with credit to savage L4.33

DV and LS comparison

• DV is simple, but convergence can be slow as each node
only has local information.

• LS offers faster convergence and better stability
(hopefully), but it’s more complex.

• Arpanet switch from DV to LS because of this, and
today ISPs use LS protocols (OSPF, IS-IS).

djw // CSE 561, Spring 2002, with credit to savage L4.34

DV Problems: Count to Infinity

1
A CB

23 2

1
A CB
3 4

Update 3

1
A CB

Update4

5 4

Etc�

Distance
to C

18

djw // CSE 561, Spring 2002, with credit to savage L4.35

Why?

• Updates don’t contain enough information

• Can’t totally order bad news above good news

• B’s accepts A’s path to C that is implicitly through B!

• Aside: this also causes delays in convergence

djw // CSE 561, Spring 2002, with credit to savage L4.36

Many potential solutions

• Hold downs
– As metric increases, delay propagating information
– Limitation: ?

• Split horizon
– Never advertise a destination through its next hop

• A doesn’t advertise C to B
– Poison reverse: Send negative information when advertising a

destination through its next hop
• A advertises C to B with a metric of ∞

– Limitation: ?
• Loop avoidance

– Full path information in route advertisement (e.g., BGP)
– Explicit queries for loops (e.g. DUAL)
– Limitation: ?

19

djw // CSE 561, Spring 2002, with credit to savage L4.37

How split horizon/pv fails

1

A C

B

D

1

1

� A tells B & C that D is unreachable

� B tells C that D is unreachable

� B tells A that D is reachable with
cost=3 (since route is through C,
split horizon doesn�t apply)

� A tells C that D is reachable through
A (cost=4)

� Etc�

1

djw // CSE 561, Spring 2002, with credit to savage L4.38

DV: Other issues

• When to send route updates?
• Periodically

– Limits granularity of failure recovery
– Global synchronization can cause packet loss

• Jittered
– Random offset from periodic deals with synchronization

problem

• Triggered
– Send updates immediately when metric changes
– Converges more quickly, but causes flood of packets

20

djw // CSE 561, Spring 2002, with credit to savage L4.39

Distance Vector in practice

• RIP
– Small infinity (RIPv1, inf=16)
– Split horizon/poison reverse
– Jittered 30 second periodic updates
– Triggered updates on failure
– Metric is hop count

• EIGRP (Cisco proprietary)
– Uses DUAL algorithm to avoid loops at all times
– Keeps track of alternate loop-free next hops; explicit queries for loop-

free paths otherwise

• BGP
– Full path information to avoid loops

djw // CSE 561, Spring 2002, with credit to savage L4.40

Reliable flooding challenges

• When link/router fails need to remove old data…how?
– LSPs carry sequence numbers to distinguish new from old
– Send a new LSP with cost infinity to signal a link down

• What happens when a router fails and restarts?
– What sequence # should it use? Don’t want data ignored
– One option: Age LSPs and send with cost 0 to purge
– Router can listen at startup to learn right sequence #

• What happens if the network is partitioned and heals?
– Different LS databases must be synchronized
– Use version #s

21

djw // CSE 561, Spring 2002, with credit to savage L4.41

Link State in practice

• OSPF (Open Shortest Path First) and IS-IS
– Most widely used IGPs
– Run by almost all ISPs and many large organizations

• Basic link state algorithm plus many features:
– Authentication of routing messages
– Extra hierarchy: Partition into routing areas
– Load balancing: Multiple equal cost routes

djw // CSE 561, Spring 2002, with credit to savage L4.42

Discussion

• How to pick metrics?

• How can you do load balancing?

• How does congestion impact routing?

• What if a router lies?

• What are the biggest scalability issues?

22

djw // CSE 561, Spring 2002, with credit to savage L4.43

Inter-domain routing: historic context

• Original ARPAnet had single routing protocol
– Dynamic DV scheme, replaced with static metric LS algorithm

• New networks came on the scene
– NSFnet, CSnet, DDN, etc…
– With their own routing protocols (RIP, Hello, ISIS)
– And their own rules (e.g. NSF AUP)

• Problem: how to deal with routing heterogeneity?

djw // CSE 561, Spring 2002, with credit to savage L4.44

What to do?

• Some problems
– Consistency: Network A uses hop count as a metric, Network B

uses measured delay, Network C uses link capacity

– Policy: Network A connects to Networks B and C. Network B is
only allowed to carry network C’s traffic?

• How would you resolve these problems?

23

djw // CSE 561, Spring 2002, with credit to savage L4.45

One solution: Inter-domain routing

• Exterior Gateway Protocols (EGPs)
– Only exchange reachability information (no metrics)
– Decide what to do based on local policy

• Autonomous Systems (ASs)
– Unit of abstraction in interdomain routing
– Roughly, a network with common administrative control, a

coherent internal routing policy, and presenting a consistent
external view of connectivity

– Represented by a 16-bit number
• Example: UUnet (701), Sprint (1239), UCSD (7377)

– Run IGPs within an AS, EGPs between ASs

djw // CSE 561, Spring 2002, with credit to savage L4.46

First attempt

• Protocol called EGP (can be confusing)
– Connected NSFnet Backbone to regional networks,

DDN/Milnet, etc..
– EGP only provided reachability information (no metrics)
– Assumed spanning tree topology based on single backbone

• No loops

• In 1995 NSFnet got out of the backbone business
– Many backbones (MCI, Sprint, AT&T…)
– Multiconnected regional networks
– Meshed topology, loops…

• Need a new protocol

24

djw // CSE 561, Spring 2002, with credit to savage L4.47

What kind of protocol?

• Link state?
– Relies on global metric & policy

• Distance vector?
– May not converge; loops

• Solution: path vector
– Reachability protocol, no metrics
– Route advertisements carry list of ASs

• “I can reach 128.95/16 through path: AS73, AS703, AS1”
• Automatic loop detection? How?

djw // CSE 561, Spring 2002, with credit to savage L4.48

Border Gateway Protocol (BGP-4)

• Principal protocol used for routing across the Internet
– Relatively simple protocol, complex usage

• Path vector protocol
– Explicitly announce or withdraw routes
– Routes include attributes in addition to path vector
– Incremental updates (stateful)

• Policy is not part of protocol, but is built on top by
filtering/mapping on attributes
– Which routes do you listen to?
– Which routes do you put in forwarding table?
– Which routes do you advertise?

25

L4.49

Establish session on
TCP port 179

Exchange all
active routes

Exchange incremental
updates

AS1

AS2

While connection
is ALIVE exchange
route UPDATE messages

BGP session

How BGP operates between nodes

Pros/Cons of using
TCP?

L4.50

� External Neighbor (eBGP) in a
different Autonomous Systems

� Internal Neighbor (iBGP) in the
same Autonomous System

AS1

AS2

eBGP

iBGP

The Interior / Exterior split

Why do we need iBGP?

26

L4.51

iBGP neighbors do not announce
routes received via iBGP to other iBGP
neighbors.

eBGP update

iBGP updates

� iBGP is needed to
avoid routing loops
within an AS

� Injecting external
routes into IGP
does not scale and
causes BGP policy
information to be
lost

iBGP keeps eBGP consistent

djw // CSE 561, Spring 2002, with credit to savage L4.52

Next time

• More on BGP: policy and mechanism
• Traffic engineering

