Congestion Control — Routers

CSE 561 Lecture 8, Spring 2002.

David Wetherall

Problems with FIFO/Drop tail

Persistent queuing

Synchronization

Burst losses

Lack of flow isolation
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Persistent queuing

Queues exist to absorb transient bursts

— Need big enough queue to deal with BW+*delay of link
We want average queue length to be small

— Non-transient queuing unnecessarily increases latency

TCP will fill queue until a loss occurs
Naturally keeps average queue length high
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Burst losses

= Real life traffic is bursty and structured

— Lots of packets from same flow back-to-back
= If the queue is full, many packets from the same flow may be lost
= TCP will likely timeout

— May not have enough duplicate acks for fast retransmit

— TCP Reno doesn’t handle multiple losses in a window well

Incoming packets Queue

— [ 1 ]

Dropped packet?
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Synchronization

Multiple TCP flows through a router

Queue fills up

Arriving packets from all flows will be dropped
Drops cause all TCP flows to slow down

Queue empties

TCPs ramp up together causing congestion

Repeat...
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Flow Isolation

= FIFO/Drop Tail doesn’t differentiate among flows

= Scenario:
— 1 UDP flow sending at 100Mbps
— 99 TCP flows
— What happens?
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Active Queue Management

= ldea: Use buffer management to improve congestion signaling and
hence queuing behavior
= Precursors
— IP Source Quench
= Router sends ICMP packet to host, “hey, partner, slow down”
— Early Random Drop

= When buffer beyond drop level, drop incoming packets according
to a drop probability

= Biases bursty traffic
— DEChit

= Set congestion-indication bit in packets when average queue length
is greater than a threshold

= Source reduces window when it sees half of packets with bit set
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Random Early Detection (RED)

= Key ideas
— Use congestion avoidance to keep average queue size low
— Detect congestion by monitoring queue size
— Signal congestion probabilistically
= Drop packets (compatible with existing TCPs)
= Also supports packet marking (ala DEChit)

= Nice side effects

— Less synchronization (random)
— Fewer burst losses
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Basic RED algorithm |

= Set two static trigger parameters

— MinThresh, MaxThresh: define where queue length should be
= Calculate average queue length

— AvgLen = (1-Weigth)*AvgLen + Weight * SampleLen

- EWMA: Weight parameter decides importance of new samples

MaxThresh MinThresh

Queue

3
AvglLen
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Basic RED algorithm i

= When a packet arrives:
— If AvgLen < MinThresh do nothing
— If AvgLen > MaxThresh drop packet
— If MinThresh < AvgLen < MaxThresh,

Drop/mark packet with probability P

e Where does P come from?
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Basic RED algorithm lll

= tmpP = MaxP*(AvgLen — MinThresh)/(MaxThresh-MinThresh)

e P =tmpP/(1-count * tmpP)

e Count? (# E‘ackets queued while AvgLen between thresholds)
10

MaxP [~

Drop probability

|
MinThresh MaxThresh

Average Queue length
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RED Marking

= With RED, you can either mark or drop packets
— When would it be better to mark instead of drop? Vice versa?
— Think about assumptions you make about the hosts

= Marking represents another congestion signal to TCP
— Bitin header: Explicit Congestion Notification (ECN)
= Proposed, RFCed, not deployed
— Forced a drop before queue fills up (c.f., FIFO)
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Implementation/Deployment issues

= RED was first introduced in the early 1990’s w/lots of
academic/IETF political support

= Still not widely deployed...

= Three key issues
— “You're going to drop my packets randomly?”
— Naive implementation is slow
= Recalculate P for each forwarded packet
= Random number generation is slow
— How to configure it?
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What does RED accomplish?

= Keeps average queue length smaller

= Reduces likelihood of synchronization

e Reduces likelihood of burst losses
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What doesn’t RED do?

Flows still aren’t isolated
RED doesn’t differentiate between flows

Depends on hosts to be well behaved and back off when
packets are dropped/marked

Return to the UDP scenario...
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The Role of the Network vs. End Host

= Problem: Hark! The sky is falling!
— Non-congestion-controlled traffic is going to cause another congestion
collapse (streaming media, “accelerators”, etc.)

Page fetch from CNN.com
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= Implication is that the network must help itself.
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Network Protection/Isolation

= Assume the network must now participate in
controlling its utilization, but that we still need E2E
congestion control

— Network mechanisms provide isolation/protection
— Hosts must still adapt their own flow behavior

= Possibilities:
— RED “penalty box™: punish aggressive flows to incent good
behavior
— Fair queuing: better isolate competing flows from one another
— Pricing: charge user for packets during congestion!
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Issue: What is “good behavior”?

= One answer is “TCP-Friendly” flows

— A TCP-Friendly flow has an arrival rate limited by VJ
congestion avoidance (mult. decrease, add. increase)

— In steady state this has a known analytic upper bound

MSS 0.7
We————
RTT \[p

= Then drop flow’s packets to throttle to expected
bandwidth. There are some limitations however:
— Need to know MSS, RTT, drop rate
— B/w depends upon RTT, need to use low RTT estimate
— Flow length? Fragmentation? Bursty vs smooth traffic?
— Unresponsive flows?
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Fair Queuing
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