Congestion Control — Routers

CSE 561 Lecture 8, Spring 2002.

David Wetherall

Problems with FIFO/Drop tail

Persistent queuing

Synchronization

Burst losses

Lack of flow isolation

djw // CSE 561, Spring 2002, with credit to savage

L8.2

Persistent queuing

Queues exist to absorb transient bursts

— Need big enough queue to deal with BW+*delay of link
We want average queue length to be small

— Non-transient queuing unnecessarily increases latency

TCP will fill queue until a loss occurs
Naturally keeps average queue length high

djw // CSE 561, Spring 2002, with credit to savage L8.3

Burst losses

= Real life traffic is bursty and structured

— Lots of packets from same flow back-to-back
= If the queue is full, many packets from the same flow may be lost
= TCP will likely timeout

— May not have enough duplicate acks for fast retransmit

— TCP Reno doesn’t handle multiple losses in a window well

Incoming packets Queue

— [1]

Dropped packet?

djw // CSE 561, Spring 2002, with credit to savage L8.4

Synchronization

Multiple TCP flows through a router

Queue fills up

Arriving packets from all flows will be dropped
Drops cause all TCP flows to slow down

Queue empties

TCPs ramp up together causing congestion

Repeat...

djw // CSE 561, Spring 2002, with credit to savage L8.5

Flow Isolation

= FIFO/Drop Tail doesn’t differentiate among flows

= Scenario:
— 1 UDP flow sending at 100Mbps
— 99 TCP flows
— What happens?

djw // CSE 561, Spring 2002, with credit to savage L8.6

Active Queue Management

= ldea: Use buffer management to improve congestion signaling and
hence queuing behavior
= Precursors
— IP Source Quench
= Router sends ICMP packet to host, “hey, partner, slow down”
— Early Random Drop

= When buffer beyond drop level, drop incoming packets according
to a drop probability

= Biases bursty traffic
— DEChit

= Set congestion-indication bit in packets when average queue length
is greater than a threshold

= Source reduces window when it sees half of packets with bit set

djw // CSE 561, Spring 2002, with credit to savage L8.7

Random Early Detection (RED)

= Key ideas
— Use congestion avoidance to keep average queue size low
— Detect congestion by monitoring queue size
— Signal congestion probabilistically
= Drop packets (compatible with existing TCPs)
= Also supports packet marking (ala DEChit)

= Nice side effects

— Less synchronization (random)
— Fewer burst losses

djw // CSE 561, Spring 2002, with credit to savage L8.8

Basic RED algorithm |

= Set two static trigger parameters

— MinThresh, MaxThresh: define where queue length should be
= Calculate average queue length

— AvgLen = (1-Weigth)*AvgLen + Weight * SampleLen

- EWMA: Weight parameter decides importance of new samples

MaxThresh MinThresh

Queue

3
AvglLen

djw // CSE 561, Spring 2002, with credit to savage L8.9

Basic RED algorithm i

= When a packet arrives:
— If AvgLen < MinThresh do nothing
— If AvgLen > MaxThresh drop packet
— If MinThresh < AvgLen < MaxThresh,

Drop/mark packet with probability P

e Where does P come from?

djw // CSE 561, Spring 2002, with credit to savage L8.10

Basic RED algorithm lll

= tmpP = MaxP*(AvgLen — MinThresh)/(MaxThresh-MinThresh)

e P =tmpP/(1-count * tmpP)

e Count? (# E‘ackets queued while AvgLen between thresholds)
10

MaxP [~

Drop probability

|
MinThresh MaxThresh

Average Queue length
djw // CSE 561, Spring 2002, with credit to savage

v

L8.11

RED Marking

= With RED, you can either mark or drop packets
— When would it be better to mark instead of drop? Vice versa?
— Think about assumptions you make about the hosts

= Marking represents another congestion signal to TCP
— Bitin header: Explicit Congestion Notification (ECN)
= Proposed, RFCed, not deployed
— Forced a drop before queue fills up (c.f., FIFO)

djw // CSE 561, Spring 2002, with credit to savage L8.12

Implementation/Deployment issues

= RED was first introduced in the early 1990’s w/lots of
academic/IETF political support

= Still not widely deployed...

= Three key issues
— “You're going to drop my packets randomly?”
— Naive implementation is slow
= Recalculate P for each forwarded packet
= Random number generation is slow
— How to configure it?

djw // CSE 561, Spring 2002, with credit to savage L8.13

What does RED accomplish?

= Keeps average queue length smaller

= Reduces likelihood of synchronization

e Reduces likelihood of burst losses

djw // CSE 561, Spring 2002, with credit to savage L8.14

What doesn’t RED do?

Flows still aren’t isolated
RED doesn’t differentiate between flows

Depends on hosts to be well behaved and back off when
packets are dropped/marked

Return to the UDP scenario...

djw // CSE 561, Spring 2002, with credit to savage L8.15

The Role of the Network vs. End Host

= Problem: Hark! The sky is falling!
— Non-congestion-controlled traffic is going to cause another congestion
collapse (streaming media, “accelerators”, etc.)

Page fetch from CNN.com
60000

50000
40000 -

30000

20000

Sequence Number (bytes)

—+- Modified Client
-# Normal Client

10000

T 1
0.4 0.6 0.8 1
Time (sec)

= Implication is that the network must help itself.

djw // CSE 561, Spring 2002, with credit to savage L8.16

Network Protection/Isolation

= Assume the network must now participate in
controlling its utilization, but that we still need E2E
congestion control

— Network mechanisms provide isolation/protection
— Hosts must still adapt their own flow behavior

= Possibilities:
— RED “penalty box™: punish aggressive flows to incent good
behavior
— Fair queuing: better isolate competing flows from one another
— Pricing: charge user for packets during congestion!

djw // CSE 561, Spring 2002, with credit to savage L8.17

Issue: What is “good behavior”?

= One answer is “TCP-Friendly” flows

— A TCP-Friendly flow has an arrival rate limited by VJ
congestion avoidance (mult. decrease, add. increase)

— In steady state this has a known analytic upper bound

MSS 0.7
We————
RTT \[p

= Then drop flow’s packets to throttle to expected
bandwidth. There are some limitations however:
— Need to know MSS, RTT, drop rate
— B/w depends upon RTT, need to use low RTT estimate
— Flow length? Fragmentation? Bursty vs smooth traffic?
— Unresponsive flows?

djw // CSE 561, Spring 2002, with credit to savage L8.18

Fair Queuing

djw // CSE 561, Spring 2002, with credit to savage

L8.19

10

