
1

Congestion Control � Routers

CSE 561 Lecture 8, Spring 2002.
David Wetherall

djw // CSE 561, Spring 2002, with credit to savage L8.2

Problems with FIFO/Drop tail

• Persistent queuing

• Synchronization

• Burst losses

• Lack of flow isolation



2

djw // CSE 561, Spring 2002, with credit to savage L8.3

Persistent queuing

• Queues exist to absorb transient bursts
– Need big enough queue to deal with BW*delay of link

• We want average queue length to be small
– Non-transient queuing unnecessarily increases latency

• TCP will fill queue until a loss occurs
• Naturally keeps average queue length high

djw // CSE 561, Spring 2002, with credit to savage L8.4

Burst losses

• Real life traffic is bursty and structured
– Lots of packets from same flow back-to-back

• If the queue is full, many packets from the same flow may be lost
• TCP will likely timeout

– May not have enough duplicate acks for fast retransmit
– TCP Reno doesn’t handle multiple losses in a window well

Incoming packets Queue

Dropped packets



3

djw // CSE 561, Spring 2002, with credit to savage L8.5

Synchronization

• Multiple TCP flows through a router
• Queue fills up
• Arriving packets from all flows will be dropped
• Drops cause all TCP flows to slow down
• Queue empties
• TCPs ramp up together causing congestion

• Repeat…

djw // CSE 561, Spring 2002, with credit to savage L8.6

Flow Isolation

• FIFO/Drop Tail doesn’t differentiate among flows

• Scenario:
– 1 UDP flow sending at 100Mbps
– 99 TCP flows
– What happens?



4

djw // CSE 561, Spring 2002, with credit to savage L8.7

Active Queue Management

• Idea: Use buffer management to improve congestion signaling and
hence queuing behavior

• Precursors
– IP Source Quench

• Router sends ICMP packet to host, “hey, partner, slow down”
– Early Random Drop

• When buffer beyond drop level, drop incoming packets according
to a drop probability

• Biases bursty traffic
– DECbit

• Set congestion-indication bit in packets when average queue length
is greater than a threshold

• Source reduces window when it sees half of packets with bit set

djw // CSE 561, Spring 2002, with credit to savage L8.8

Random Early Detection (RED)

• Key ideas
– Use congestion avoidance to keep average queue size low
– Detect congestion by monitoring queue size
– Signal congestion probabilistically

• Drop packets (compatible with existing TCPs)
• Also supports packet marking (ala DECbit)

• Nice side effects
– Less synchronization (random)
– Fewer burst losses



5

djw // CSE 561, Spring 2002, with credit to savage L8.9

Basic RED algorithm I
• Set two static trigger parameters

– MinThresh, MaxThresh: define where queue length should be

• Calculate average queue length
– AvgLen = (1-Weigth)*AvgLen + Weight * SampleLen
– EWMA: Weight parameter decides importance of new samples

MaxThresh MinThresh

AvgLen

Queue

djw // CSE 561, Spring 2002, with credit to savage L8.10

Basic RED algorithm II

• When a packet arrives:
– If AvgLen < MinThresh do nothing
– If AvgLen > MaxThresh drop packet
– If MinThresh < AvgLen < MaxThresh,

Drop/mark packet with probability P

• Where does P come from?



6

djw // CSE 561, Spring 2002, with credit to savage L8.11

Basic RED algorithm III

• tmpP = MaxP*(AvgLen – MinThresh)/(MaxThresh-MinThresh)
• P = tmpP/(1 – count * tmpP)
• Count? (# packets queued while AvgLen between thresholds)

D
ro

p 
pr

ob
ab

ilit
y

1.0

MaxP

MinThresh MaxThresh
Average Queue length

djw // CSE 561, Spring 2002, with credit to savage L8.12

RED Marking

• With RED, you can either mark or drop packets
– When would it be better to mark instead of drop? Vice versa?
– Think about assumptions you make about the hosts

• Marking represents another congestion signal to TCP
– Bit in header: Explicit Congestion Notification (ECN)

• Proposed, RFCed, not deployed
– Forced a drop before queue fills up (c.f., FIFO)



7

djw // CSE 561, Spring 2002, with credit to savage L8.13

Implementation/Deployment issues

• RED was first introduced in the early 1990’s w/lots of
academic/IETF political support

• Still not widely deployed…

• Three key issues
– “You’re going to drop my packets randomly?”
– Naïve implementation is slow

• Recalculate P for each forwarded packet
• Random number generation is slow

– How to configure it?

djw // CSE 561, Spring 2002, with credit to savage L8.14

What does RED accomplish?

• Keeps average queue length smaller

• Reduces likelihood of synchronization

• Reduces likelihood of burst losses



8

djw // CSE 561, Spring 2002, with credit to savage L8.15

What doesn�t RED do?

• Flows still aren’t isolated
• RED doesn’t differentiate between flows
• Depends on hosts to be well behaved and back off when

packets are dropped/marked
• Return to the UDP scenario…

djw // CSE 561, Spring 2002, with credit to savage L8.16

The Role of the Network vs. End Host

• Problem: Hark! The sky is falling!
– Non-congestion-controlled traffic is going to cause another congestion

collapse (streaming media, “accelerators”, etc.)

• Implication is that the network must help itself.

Page fetch from CNN.com

0

10000

20000

30000

40000

50000

60000

0 0.2 0.4 0.6 0.8 1
Time (sec)

Se
qu

en
ce

 N
um

be
r (

by
te

s)

Modified Client
Normal Client



9

djw // CSE 561, Spring 2002, with credit to savage L8.17

Network Protection/Isolation

• Assume the network must now participate in
controlling its utilization, but that we still need E2E
congestion control
– Network mechanisms provide isolation/protection
– Hosts must still adapt their own flow behavior

• Possibilities:
– RED “penalty box”: punish aggressive flows to incent good

behavior
– Fair queuing: better isolate competing flows from one another
– Pricing: charge user for packets during congestion!

djw // CSE 561, Spring 2002, with credit to savage L8.18

Issue: What is �good behavior�?
• One answer is “TCP-Friendly” flows

– A TCP-Friendly flow has an arrival rate limited by VJ
congestion avoidance (mult. decrease, add. increase)

– In steady state this has a known analytic upper bound

• Then drop flow’s packets to throttle to expected
bandwidth. There are some limitations however:
– Need to know MSS, RTT, drop rate
– B/w depends upon RTT, need to use low RTT estimate
– Flow length? Fragmentation? Bursty vs smooth traffic?
– Unresponsive flows?

pRTT
MSSBW 7.0

≈



10

djw // CSE 561, Spring 2002, with credit to savage L8.19

Fair Queuing


