Network Security

CSE 561 Lecture 9, Spring 2002.
David Wetherall

What is network security?

= Protecting information
— Confidentiality
— Integrity
— Authenticity/Non-repudiation

= Protecting systems
— Access (who is authorized to do what)
— Awvailability (Idenial of service)

— Containment (detecting compromises, limiting their effects)

= These are very broad categories.

djw // CSE 561, Spring 2002, with credit to savage L9.2

Why is it challenging?

« Fragility
— Security is a negative goal. Any vulnerability (design,
implementation, configuration) can defeat it.
- Implementation flaws are a big deal in practice, e.g. viruses

= EXposure

— The Internet is shared with many, mostly anonymous parties,
e.g., IP address spoofing complicates denial of service

— Compare to a standalone banking network ...

djw // CSE 561, Spring 2002, with credit to savage L9.3

Basic Cryptography (Peterson 8-1-8.3)

Sender Receiver
Plaintext (M) Plaintext (M)

Encrypt Ciphertext (C)

E(M,KE)

»

= Cryptographer chooses functions E, D and keys KE, KP
— Mathematical basis rather than assumed secrecy of method
— Private keys support encryption
— Public keys along with a PKI support authentication

= These solutions are based on trust; the key is the principal

djw // CSE 561, Spring 2002, with credit to savage L9.4

Example Systems

We can protect information at different levels.

Pretty Good Privacy (PGP)
— For authentic and confidential email

— For secure Web transactions

IP Security (IPSEC)
— Framework for encrypting/authenticating IP packets

djw // CSE 561, Spring 2002, with credit to savage

Secure Sockets (TLS nee SSL) and Secure HTTP (HTTPS)

L9.5

Security Problems in TCP/IP [Bellovin89]

= Primarily concerned with protocol vulnerabilities

relating to authenticity
— Key issue: source addresses are taken at face value without
strong evidence or proof

= Vulnerabilities

Sequence number guessing
Source routing

Routing protocol attacks
ICMP attacks

DNS, ARP

djw // CSE 561, Spring 2002, with credit to savage

L9.6

TCP Sequence # prediction

e Problem:

— Many applications use IP address for access control (WebAuth,
r-commands)

— Easy to spoof IP address; TCP requires port and seq#
— If you can guess initial sequence number (ISN) then can create
“fake” TCP sessions as well

= Blind spoofing

— Attacker->Server: SYN(ISNa) [spoof client]
Server->Client: SYN(ISNs), ACK(ISNa) [what happens?]
Attacker->Server; ACK(ISNs) [spoof client]
— Attacker->Server: “echo” “*” >> ~/.rhosts” [spoof client]
Attacker -> Server: RST [spoof client]

djw // CSE 561, Spring 2002, with credit to savage L9.7

TCP sequence # prediction

How hard is to guess ISN?

Traditional systems (< 1999)

— Increment ISN by constant over time

— Very easy to predict

Most modern TCP stacks

— Random increment

— Still predictable (need more trials)
Cryptographically secure RNG makes this hard
— Overhead

djw // CSE 561, Spring 2002, with credit to savage L9.8

Source routing

e Problem:

— If source IP address is used for authentication, then attacker can
pretend to be trusted host but route through attacker

= Solution:
— Disable source routing

djw // CSE 561, Spring 2002, with credit to savage L9.9

Routing attacks

= Problem: Attacker may advertise bogus routes
— Claim to originate network/host
— Intercept packets then re-route to true destination
— May also cause denial-of-service

e Solutions

— Policy about which routes you believe (don’t accept routes for
own network); have well-known neighbors

— Authentication of routing protocol sessions
— Open research problem to handle this problem efficiently...

djw // CSE 561, Spring 2002, with credit to savage L9.10

ICMP attacks

= Used to report errors/exceptional conditions from
network to end hosts

= Problem: spurious ICMP messages
— ICMP Redirect (optimization): send traffic to alternate router
— ICMP TTL Exceeded, Dest/Net Unreachable: kill connection

= Solutions: ad hoc
— Don’t accept redirect (or only from same subnet)
— Match packet body on ICMP errors

djw // CSE 561, Spring 2002, with credit to savage L9.11

DNS/ARP

= Problem: name translation (DNS->IP and MAC->IP) is
vulnerable to spoofing

— DNS sequence # prediction (must also guess client port) allows
attacker to spoof DNS server reply

— Attacker can spoof reply to ARP who-has requests to intercept
host traffic on same LAN

= Solutions:
— Better DNS sequence # generation
— No good solution currently for ARP spoofing (switches help)

djw // CSE 561, Spring 2002, with credit to savage L9.12

Firewalls — security in practice

Firewall Protected site

= Firewalls selectively sever or allow connectivity between protected
site and outside world based on a site policy.

Rest of the Internet

= EZ2E access checks based on crypto authentication (rather than IP
address) work fine in theory. But firewalls are it in practice! Why?

— EZ2E solutions aren’t deployed; a PKl is required
— Centralized application and control of policy

= Intrusion detection systems are also used to spot attacks

djw // CSE 561, Spring 2002, with credit to savage L9.13

Ex: Congestion Signaling with ECN

= Competing senders adjust the rate of TCP connections to
share bandwidth based on router feedback (drops).

acks. and marks

L -
Send =~ - w= mark Receivers
enders router report
adjust rates -
- Mtk marks/drops
- / N

acks and marks

= With Explicit Congestion Notification (ECN), routers
mark (rather than drop) packets to signal congestion.

djw // CSE 561, Spring 2002, with credit to savage L9.14

Problem — marks can be erased

= Unlike drops, marks on packets can be erased, causing
the sender to send too fast through no fault of its own

acks only.

Top sender Bk Top receiver

never sees - neglects to

competition - rﬁk NA report marks
-

acks and marks

= During testing, VPNs/firewalls were found to do this.

djw // CSE 561, Spring 2002, with credit to savage L9.15

And it makes a big difference

= Bad receiver gets up to 10X throughput at others’ expense
10

—&— 1 cheater with behavers
—m®— only behavers
—&— behavers with 1 cheater

Flow Rate Mbits/second

LA e e e e e e LA A St —
0 10 20 30

Total number of flows
djw // CSE 5 ~ ~ L9.16

Solution — Robust Congestion Signaling (ICNP’01)

= Senders attach nonces to packets, which routers erase to
mark. Receivers report nonce sums to prove no congestion.

< acks.and 0.7.1.1.0
Senders ¥ mgy ” 2= fv Receivers
check | report
router p
nonce o oy nonce sums
sums > 8 : ~y
- / N

<&

acksand ?,?,0,0,1

= Now bugs slow faulty connection, but not others.
e This is the new IETF ECN design

djw // CSE 561, Spring 2002, with credit to savage L9.17

Denial of Service

Consume sufficient resources to render system
unavailable, thus denying service to legitimate users.

Q: Does authentication solve this problem?

Serious problem in the Internet today
— Lack of accountability (IP address spoofing, reflectors)
— Ease of marshalling attack (amplifiers, zombies)
— Lack of control (can’t stop people sending you packets)

This is a network problem, requiring network solutions
— Ingress filtering, traffic “pushback”

djw // CSE 561, Spring 2002, with credit to savage L9.18

Ex: TCP Connection Establishment

= Two parties need to “syNchronize” to form a connection
= TCP uses a three way handshake — for classic reliability!

originator recipient

%
X and Y w

are nonces time
ACKY

(data)

djw // CSE 561, Spring 2002, with credit to savage L9.19

Problem — SYN flooding

= If originator doesn’t follow through, it burdens the recipient. Used
for denial-of-service starting ~1996 through today.

SYNX,Y, Z, ...
@ State kept for incomplete
connections can exhaust
resources ...

= (Plus, if nonces are predictable then fake connections can be forged.)

djw // CSE 561, Spring 2002, with credit to savage L9.20

10

Solution — offload state with cookies

= Don’t keep the state. Send it back and let the originator return it
later. But state must be an opaque, verifiable cookie ...

——SWNX

ACK X, SYN No per connection state
during handshake

——AKO

= Linux SYN cookies (‘97) : reply nonce © is used to carry a cookie. It
is securely hashed with a secret so it can be checked on return.

djw // CSE 561, Spring 2002, with credit to savage L9.21

Ingress filtering and Pushback

= Ingress filtering

— Strict RPF check: Validate that source address is contained as next-hop
in forwarding table on interface receiving packet; else drop packet

= Only appropriate at network edges

— Loose RPF check: Just validate source address is in forwarding table
= More widely applicable, but less helpful

— Automatically blocks many spoofed source address
= But requires near-universal deployment to be effective
= And doesn’t stop attacks using legitimate addresses

= Pushback
— Preferential drop of unwanted traffic at routers
— Push drop requests back router-by-router from point of overload

djw // CSE 561, Spring 2002, with credit to savage L9.22

11

Summary

Security is a huge field, poorly fleshed out

Mostly based on trust
— Authenticity, confidentiality, integrity to establish trust with outsider
— Firewalls/IDS define trusted vs untrusted infrastructure
— If you don’t have trust, these measures don’t help

Every protocol in use today likely has security holes
— We don’t design for the adversary

How many of the flaws we discussed today still exist?

djw // CSE 561, Spring 2002, with credit to savage L9.23

12

