
An Ack Based Visible-Light Data Transmission Protocol

Avanish Kushal
Prasang Upadhyaya

ABSTRACT
We describe a communication protocol that uses visible-light to
provide reliable and in order transfer of data between a pair of
machines. Visible-light is a wireless transmission medium that
also provides natural protection against eavesdropping since vis-
ible light rapidly attenuates with distance and angular variations.
We experimentally verify these properties. We also design a flow
control algorithm, similar to TCP, for dealing with dynamic ambi-
ent brightness, which has a strong impact on the performance
of the system.

1. INTRODUCTION
The work aims to use visible light as a means of communi-

cating small amounts of data in a client-server model. Devices
that transmit and receive light are ubiquitous and attenuation
of light with distance and under perspective distortions gives a
naturally secure channel for wireless communication unlike tra-
ditional wireless.

We consider a simple hardware setup that uses standard desk-
top monitors as transmitters and stock web cameras as receivers
of visible light. An example setup we used is shown in Figure 1.
Unlike other visible-light communication protocols that use cus-
tom hardware or that use high mega pixel cameras, we restrict
ourselves to consumer hardware with cameras with resolutions
in the order of 2MP which is similar to mobile phone camera
resolutions. Thus our system can also be used for mobile appli-
cations.

We assume the presence of a back channel from the client to
the server for sending acknowledgements. In most phones to-
day the camera is present at the opposite side of the display and
so if we replace the client with a mobile phone this assumption
would mean the receiver and transmitter at the server will have
to be on opposite sides of the clients phone. In a client server
model where the server is fixed and can take its input from any
camera this problem can be overcome with apt placement of the
webcam. Also new generation phones are coming with cam-
eras on both sides. We also assume that the data is transferred
with the devices being spatially stable - thus the devices do not

Figure 1: An Example Setup

need to register multiple times. This assumption naturally helps
to improve throughput of the channel.

A natural use case would be a situation where we would like
to transfer some data onto the mobile phones of certain "quali-
fied" users and so broadcasting the information over a wireless
doesn’t serve our purpose. For example, consider a book shop
that wants to reward its premium customers with snippets from
upcoming books - this information could be transferred by using
this model without worrying about the different data transfer ca-
bles for the different makes of phones and do this in a secure
manner.

1.1 Related Work
Recently there has been some interest in using the ubiqui-

tous light sources to communicate data using wireless. To this
end [9] build an LED based wireless communication system and
study the attenuation of visible light. [8] present a fundamental
framework for transmitting white LED light. These approaches
use temporal techniques to transfer data.

In another line of work, using 2D Bar codes like QR codes with
forward error correction, and motivated by the ISO standards de-
veloped [4, 6, 5] to utilize bar codes to code visual information,
[10] setup a communication channel to study the properties of
individual color channels and visible light in general. Our work
is similar to this except we provide a reliable data communica-
tion channel using low resolution web cameras as opposed to
10MP SLR cameras used in their setup. Also they capture a



Figure 2: Overall Architecture

single frame and work with that - we setup a back channel with
acknowledgements to send multiple frames in order.

Based on the comparative study [7] of prevalent 2D bar codes
like QR code, VS code, Data Matrix, Visual Code and Shot code
we use Data Matrix codes which are 2 dimensional barcodes
and can store up to 2335 alphanumeric characters. Data matrix
codes are used in various applications including encoding prod-
uct and serial number and to identify circuits, lenses etc. Along
with providing forward error correction, they ensure the bright-
ness of the screen is roughly the same independent of the code,
without which the web cam would frequently self-adjust bright-
ness depending on the screen brightness and this dynamic ad-
justment causes more errors during frame capturing.

2. PROTOCOL
Our protocol provides functionalities of the link layer and the

transport layer as defined by the OSI architecture. We do not
provide any network layer functionality since we only experiment
with a pair of machines and thus have no need for addressing
features. But this is not a design decision that affects our proto-
col’s correctness and our protocol can be easily augmented with
network layer features.

2.1 Link Layer
The link layer has two main responsibilities in our design:

1. To determine the area of interest in a webcam’s field of
vision. We achieve this goal using registration.

2. To efficiently determine when a new packet is available to
process.

The server transmits data only after the initial registration (step
1) completes. During data transmission, the server breaks the
file into chunks (of sizes determined by flow control algorithms)
and displays the Data Matrix encoding of the chunk. The client
regularly captures images and applies the perspective correc-
tion defined by the registration on each captured frame and then
tries to decode it. On success, the client sends an acknowledg-
ment using its display monitor. On the server side, this acknowl-
edgement causes the server to send its next frame. Thus, we
use a window size of 1 in this protocol.

We now describe these steps.

2.1.1 Registration

In order to obtain a robust mechanism that works under differ-
ent perspective transformations, we perform a registration be-
tween the web cameras and the displays to determine where
the transmitted data pattern (2D barcode) is located within the
captured image. We describe now how the server display is reg-
istered with the client. The other direction is similar to the server
to client case.

All the steps we now describe are summarized in Figure 3
We first display a black screen at the server and capture that

at the client. Next the server displays a white image and the
client captures that as well.

Then we compute the difference image between the black and
the white frames to detect where the display screen is within
the image. However because of noise and color seepage due
to brightness modifications it need not be a quadrilateral and
cannot be used as is to determine the area of interest.

So, as a next step we compute the gradient image of the dif-
ference image using a Sobel filter to get the boundary of the
quadrilateral. Note that this process is still noisy with many dif-
ferent lines forming some quadrilateral.

In the next step we use the Random Sample Consensus (RANSAC)
algorithm [2] to detect lines in the gradient image. RANSAC ran-
domly samples pixels and fits the best line through these pixels
using least squares. If the line is indeed valid in the scene then
many other pixels would be expected to lie on this line within
some error bound. On the other hand if the randomly chosen
points do not determine a line in the scene then very few points
would be close to it in the gradient image. We choose the top 4
lines which give us the 4 most appropriate lines for the quadri-
lateral for the boundary of the display screen in the image (both
in terms of least square error and number of points actually on
the line). Note RANSAC is in particular robust to noise which is
omnipresent in the image acquisition process.

Once we have determined the 4 boundary lines we find the
intersections and determine the corner points of the quadrilat-
eral. This now gives us a mapping between pixels on the display
screen and their location on the acquired image. This mapping
between 2 planes is called a homography. Once we have the
homography, the area on interest is restored using well known
techniques [3] for recovering perspective projections. We do this
step both for the server and client to establish a back link for
sending acknowledgment as well.

For the example we have shown, the four lines we detect and
the corresponding corners are shown in Figure 3.

2.1.2 Efficient Identification Of New Frames
The receiver webcam regularly capturing images. For each

such capture we need to determine if the frame captured has
a new barcode. The naive approach would be to encode a se-
quence number in the data before generating the barcode. How-
ever, this approach requires us to to decode each barcode we
capture to just determine whether the barcode was old or new.
As we experimentally observed the bottleneck in this protocol is
this decoding process at the client and thus to do this every time
at the client for each captured frame would not be very efficient.

Thus, we choose to encode the sequence number in the color
of the barcode (note that our window size is 1 and hence we
need only 1 bit to represent whether the frame is odd or even).
We alternate colors from black-white to red-white between con-
secutive frames as shown in Figure 4.

This helps the client to quickly determine if the frame is an
old frame or a new frame without needing to decode it. The
client determines the color by sampling pixels in the image to



Figure 3: The figure shows the steps of the registration process in order. (a) shows the captured image at the web camera
corresponding to a white screen on the server. (b) shows the captured image at the web camera corresponding to a black
screen on the server. (c) shows the result of taking the difference of these 2 images(a) and (b) and thresholding the pixel-wise
difference. (d) shows the result of applying the Sobel filter to (c) detecting gradient(boundary) for the varying area. (e) shows
the result of applying RANSAC to (d) to detect lines and corners to determine the homography. Detected lines our shown in
red and corners are shown as 4 small rectangles.

Figure 4: Acknowledgement Timeline. The server is on the
left and the client on the right. The client switches its screen
display from all white to all black to send an acknowlege-
ment.

determine the percentage of red pixels. We set a low threshold
(enough to take care of random noise) to classify the frame as
an odd or even frame.

Thus the color of the frames acts as our sequence number -
and we determine whether we need to decode the image or just
drop it and move to the next frame.

Figure 4 summarizes the behavior of the link layer.

2.2 Transport Layer
In contrast with TCP where congestion control in the network

is implemented by restricting the packet sizes, in our setup flow

control is implemented by controlling the packet size as the we
always have only one outstanding packet. Figures 8 shows the
percentage of frames successfully received and decided as a
function of the packet size, and Figure 9 the expected throughput
as a product of the packet size and the acceptance rate. We can
see that as we increase the packet size the success rate remains
pretty steady before going through a very sharp falloff. Looking
at the graph on the right, this is seen as there is a linear increase
in the expected throughput in the region where the success rate
is high. However once it crosses the falloff point the throughput
falls down rapidly.

As we describe below and show in the experiments given the
specific characteristic of the visible light channel we can do bet-
ter than Additive Increase Multiplicative Decrease (AIMD) with
Slow Start as done in TCP.

The primary difference between our system and TCP is that
there are no other competing sources of traffic and each channel
is dedicated to one server client interaction. Also, once the po-
sition and angle are relatively stable, barring changes in lighting
conditions the optimal packet size does not vary much. Contrast
this with normal networks where the target packet number is a
much more dynamic quantity. Thus one can justify using a more
aggressive strategy than arithmetic increase to reach the opti-
mal packet size, or not reducing packet size by as much as half
when a timeout occurs. We build on this intuition to propose the
following algorithms for flow control:

2.2.1 Aggressive
Upon failure, The algorithm reduces the packet size to the

last successfully transmitted size. If the packet was successfully
decoded by the receiver before timing out the packet is incre-
mented by a value δ and the value of δ is doubled for the next
round. δ is reset to one after every timeout. If after a failure
the frame size we dropped down to doesn’t work we reduce the
packet size by a half of its existing size. After every failure, this
algorithm requires log(L − p) steps to cross the upper limit L
where p is the last successfully acknowledged packet size.



250	
  

300	
  

350	
  

400	
  

450	
  

500	
  

550	
  
Pa
ck
et
	
  S
iz
e	
  

Packet	
  number	
  generated	
  

Figure 5: Comparison of packet size variation for the three
different flow control strategies. The maximum possible
packet size that can be transmitted for the configuration
was 500 and is denoted by the blue curve. AIMD is denoted
by the red curve; Aggressive by the Purple curve and Stable
by the green curve. The graph start just at the point where
Slow Start causes a timeout at a packet size of 512.

2.2.2 Stable
Like AIMD, the packet size is increased by 1 upon success.

However, upon failure, Stable reduce the packet size to a smaller
packet size that optimizes the average bandwidth observed dur-
ing steady state. The calculation of the new value is described
below.

Let x be the largest packet size successfully sent. Also as-
sume that in one timeout we can transmit t number of packets.
Suppose we tried sending packet size x + 1 and it failed and
we reduce the packet size by n. In such a case the average
throughput is: ∑x

i=x−n i

n+ 1 + t
=
n(x− n

2
)

n+ 1 + t

Differentiating the above with respect to n we get the optimal
value at,

n =

√
8x+ (2 + t)2 − 1

2

n ≈
√
2x

Thus, if a packet drop occurs at packet size x the new packet
size we choose is x−

√
2x.

Figure 5 shows the behavior of the three flow control protocols
for a setup where the maximum packet size that can be trans-
ferred is 500 for a setup where the maximum packet size that
can be transferred is 500.

2.2.3 Timeouts
We experimentally determined that if the input barcode to the

decoder library eventually produced a valid output the decoding
process took at most 200ms while if the input barcode was too
corrupted for decoding, the decoder took more than 1s to time
out. Based on these values we chose a value of 3s to timeout.
This allows the client to try decoding twice before the server
reduces the packet size.

3. EXPERIMENTS
We conduct two kinds of experiments:

0	
  

7.5	
  

15	
  

30	
  0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

0	
   5	
   10	
   15	
   20	
   25	
   30	
   35	
  

O
p#

m
al
	
  P
ac
ke
t	
  S

iz
e	
  

Angle	
  (in	
  degrees)	
  

Figure 6: The y-axis represents the packet size with the
highest observed bandwidth over 100 packets sent. The
distance of the screen and the webcam was kept constant,
only the angle between the two planes was changed.

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

0.4	
   0.5	
   0.6	
   0.7	
   0.8	
   0.9	
   1	
  

O
p#

m
al
	
  P
ac
ke
t	
  S

iz
e	
  

Distance	
  (in	
  meters)	
  

Figure 7: The y-axis represents the packet size with the
highest observed bandwidth over 100 packets sent. The
viewing angle of the screen and the webcam was kept
constant, only the distance between the two planes was
changed.

1. We experimentally determine the effective bandwidth of
the visible light link capacity as a function of distance, view
angle and data matrix packet size.

2. We then evaluate the performance of the three different
flow control algorithms we mention in this report: AIMD,
Aggressive and Stable.

Our experiments were conducted using the following appara-
tus:

• The server screen used was a Dell 24-inch full HD widescreen
monitor. The pixel area we used was a 900 × 900 size
screen area.
• The client was a 2.4GHz Intel Core 2 Duo processor with

2 GB of DDR2 SDRAM running Mac OS X version 10.6.3
• Both the client and the server received their input using 2

Megapixel Logitech webcam.
• We use the dmtxread and the dmtxwrite command line

utilities from the Open Source Data Matrix Library libdmtx [1]
version 0.5.2

3.1 Effective Bandwidth Variation



0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

0	
   50	
   100	
   150	
   200	
   250	
   300	
   350	
   400	
   450	
  

Fr
ac
%
on

	
  c
or
re
ct
ly
	
  d
el
iv
er
ed

	
  

Packet	
  Size	
  

Figure 8: The y-axis represents the fraction of packets sent,
in a batch of 100 packets, that were successfully decoded
by the receiver. The distance and the viewing angle of the
screen and the webcam were kept constant, only the packet
size of the barcodes were changed.

We define effective bandwidth as the average bandwidth for a
given transmission that also accounts for the bandwidth lost due
to wasted transmission time when the server times out.

We conducted three experiments where we individually var-
ied: the distance of the client from the server, the angle of the
planes of the client and the server and the density of the data
transmitted by the server. Because the display areas is fixed,
the density is directly proportional to the number of characters
in each of the server’s packets.

As observed in Figures 7, 6 the packet size used for the max-
imum possible effective bandwidth sharply drops as either the
distance or the angle is increased. This observation leads us
to conclude that visible light data link layer are relatively secure
against eavesdropping if the clients are of similar technical spec-
ifications.

Figure 8 and figure 9 show the variation in the percentage
of successfully transmitted packet and the corresponding effec-
tive bandwidth respectively, in a batch of 100, as we increase
the packet sizes while keeping the distance and angle constant.
The fraction of successfully transmitted packets stays at 1 for a
while and then suddenly drops to zero. This is expected since
as the density of data matrix codes increase random noises in
the camera and the ambience are more likely to corrupt the cap-
tured frame at the client enough so that it can not be decoded.
A similar observation holds true for the effective bandwidth ob-
served.

Note that the environment, consisting of the distance, angle,
and the ambient lighting conditions, defines an upper limit on
the packet size that can be successfully decoded by the client.
In an ideal case, once we cross this upper limit the fraction of
successful packets should drop to zero from one. Indeed, we
observe an approximate step function in Figure 8.

3.2 Flow Control Algorithm Evaluation
In this experiment we transmit a file containing 20000 char-

acters using our protocol. We run the three different congestion
control algorithm and measure the average time taken for trans-
mission. We take an average of three different runs. The results
are presented in Figure 10.

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

0	
   50	
   100	
   150	
   200	
   250	
   300	
   350	
   400	
   450	
  

Eff
ec
%
ve
	
  b
yt
es
	
  re

ce
iv
ed

	
  p
er
	
  p
ac
ke
t	
  

Packet	
  Size	
  

Figure 9: The y-axis represents the effective bytes per
packet sent and is equal to the produce of the fraction of
packets correctly decoded and the size of the packets. The
distance and the viewing angle of the screen and the we-
bcam were kept constant, only the packet size of the bar-
codes were changed. The total number of packets sent for
each size were 100.

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
  

AIMD	
   Stable	
   Aggressive	
  

Ti
m
e	
  
(in

	
  s
)	
  

Figure 10: This graph shows the time taken by the three
different flow control algorithms to transmit a file with 20K
randomly generated alphanumeric characters.

Contrary to theoretical expectations, the Aggressive strategy
outperforms AIMD and Stable. Compared to Aggressive, AIMD
is 1.47 times slower and Stable is 1.14 times slower. The rea-
son for this observation is that Stable will outperform Aggressive
when the ideal step is actually observed and when the the up-
per limit remains constant. As the distance and angle increase
these assumptions are very likely to be violated. Thus an early
random packet drop will heavily penalize AIMD and Stable while
Aggressive will recover from the random setback to reach the
optimal in a logarithmic number of steps.

Note that in none of the cases does AIMD turn out to be the
optimal flow control algorithm to use.

4. CONCLUSION
We present a wireless optical system built out of commod-

ity hardware for transferring small amount of data using with-
out wires and securely using visible light. We demonstrate ex-
perimentally how security is in built in our mechanism. A key
learning is that in the absence of changes in surrounding light,



the performance remains quite steady, which is exploited by the
making modifications to the TCP’s basic AIMD with slow start
protocol. With improvements in hardware and in cell phones,
the throughput that can be achieved reliably with this protocol
will increase.

Currently our system is designed as a server client model and
building a duplex connection will allow the system to be used
in many other scenarios. Another line of work could be to dy-
namically adjust screen brightness in response to changes in
brightness of the surroundings.

5. REFERENCES
[1] libdmtx data matrix encoding/decoding library.

http://www.libdmtx.org.
[2] M. A. Fischler and R. C. Bolles. Random sample

consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, 1981.

[3] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004.

[4] ISO. International symbology specification maxicode.
ISO/IEC 16023:2000, 2000.

[5] ISO. Automatic identification and data capture techniques
- data matrix bar code symbology specification. ISO/IEC
16022:2006, 2006.

[6] ISO. Automatic identification and data capture techniques
- qr code 2005 bar code symbology specification. ISO/IEC
18004:2006, 2006.

[7] H. Kato and K. T. Tan. Pervasive 2d barcodes for camera
phone applications. IEEE Pervasive Computing, 6:76–85,
2007.

[8] T. Komine and M. Nakagawa. Fundamental analysis for
visible-light communication system using led lights. IEEE
Trans. on Consumer Electronics, February 2004.

[9] T. D. C. Little, P. Dib, K. Shah, N. Barraford, and
B. Gallagher. Using led lighting for ubiquitous indoor
wireless networking. IEEE Intl. Conf. on Wireless and
Mobile Computing, Networking and Communication,
October 2008.

[10] G. Woo, A. Mohan, R. Raskar, and D. Katabi. Simple lcd
transmitter camera receiver data link. Technical report,
Massachusetts Institute of Technology, 2009.


