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Inverse	Op/mal	Control	
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Mode 1: Training example
 Mode 1: Training example


Mode 1: Learned behavior
 Mode 1: Learned behavior
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Mode 1: Learned cost map
 Mode 2: Training example


Mode 2: Training example
 Mode 2: Learned behavior
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Mode 2: Learned behavior
 Mode 2: Learned cost map


Ratliff,	Bagnell,	Zinkevich	2005	
Ratliff,		Bradley,	Bagnell,	ChestnuG,	NIPS	2006	
Silver,	Bagnell,	Stentz,	RSS	2008	
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vector


Cost =   
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F  

w=[],	F=[]	

Ratliff,	Bagnell,	Zinkevich,	ICML	2006	
Ratliff,		Bradley,	Bagnell,	ChestnuG,	NIPS	2006	
Silver,	Bagnell,	Stentz,	RSS	2008	
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w=[w1],	F=[F1]	

Ratliff,	Bagnell,	Zinkevich,	ICML	2006	
Ratliff,		Bradley,	Bagnell,	ChestnuG,	NIPS	2006	
Silver,	Bagnell,	Stentz,	RSS	2008	

Learn F2


(      , High Cost)


(       ,  Low Cost)


Ratliff,	Bradley,	ChesnuG,	
	Bagnell	06	

Zucker,	Ratliff,	Stolle,	
ChesnuG,	Bagnell,	
Atkeson,	Kuffner	09	

Learned	Cost	Func/on	Examples	
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Learned	Cost	Func/on	Examples	 Learned	Cost	Func/on	Examples	

Mimicry im
plies 

Prediction
Pedestrian Trajectory Prediction
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Pedestrian Trajectory Prediction
 Pedestrian Trajectory Prediction


Pedestrian Trajectory Prediction


(Using O(1) Bayes’ 
Rule for Goals)


Pedestrian Trajectory Prediction
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Staying out of People’s Path

Car Prediction


Learning	Manipula-on	Preferences	
•  Input:	Human	demonstra/ons	of	preferred	behavior	

(e.g.,	moving	a	cup	of	water	upright	without	spilling)	
	

•  Output:	Learned	cost	func/on	that	results	in	trajectories	
sa/sfying	user	preferences	

	

31	 32	

Demonstra-on(s)	
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Demonstra-on(s)	 Graph	

34	

Demonstra-on(s)	 Graph	

35	

Demonstra-on(s)	 Graph	 Projec-on	

36	

Demonstra-on(s)	 Graph	 Projec-on	
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Demonstra-on(s)	 Graph	 Projec-on	

Learned	cost	

38	

Demonstra-on(s)	 Graph	 Projec-on	

Discrete	sampled	
paths	 Learned	cost	
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Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	
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Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Discrete	
MaxEnt	IOC	
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Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Local	Trajectory	
Op-miza-on	
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Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Discrete	
MaxEnt	IOC	

Discrete	MaxEnt	IOC	

•  Input:	Expert	demonstra/ons	for	a	specific	
task,	obstacle	data,	feature	func/ons	

•  Output:	Cost	func/on	(		*),	discrete	path	
samples	sa/sfying	user	preferences	

•  Steps:	
1. Graph	genera/on	
2. Projec/on	
3.  Learning	the	cost	func/on	
4. Sampling	discrete	paths	from	the	graph	

✓

43	

2D	obstacle	avoidance	task	

44	
2D	state:	(x,y)		
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Graph	genera-on	
•  Goal:	Construct	a	graph	in	the	robot’s	configura/on	

space	providing	good	coverage	

45	

Projec-on	
•  Goal:	Project	the	con/nuous	demonstra/on	onto	the	

graph,	resul/ng	in	a	discrete	graph	path	

•  Use	a	modified	Dijkstra’s	algorithm	minimizing	sum	of:	
–  Length	of	discrete	path	(Euclidean)	
–  Distance	to	con/nuous	demonstra/on	

46	

Learning	the	cost	func-on	
•  Goal:	Given	projected	demonstra/ons,	learn	the	cost	

func/on	
•  Learn	feature	weights	(			*)	using	soLened	value	

itera-on	on	the	discrete	graph	(MaxEnt	IOC	-	Ziebart	et	al.,	2008)	

–  State	dependent	features	(eg:	Distance	to	obstacles)	

✓
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Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Discrete	
MaxEnt	IOC	



12/6/15	

13	

49	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Local	Trajectory	
Op-miza-on	

Local	Trajectory	Op-miza-on	
•  Sampled	discrete	graph	paths	are	jerky	and	cannot	be	

executed	on	a	real	robot	

•  Naïve	smoothing	of	the	graph	path	can	result	in	
trajectories	with	high	task-related	cost	

•  We	add	a	smoothness	regularizer	(squared	velocity)	to	
the	learned	cost	func/on	and	op/mize	via	local	
trajectory	op/miza/on	(LTO)	

	

50	

 

ξ * = argmin
ξ
c[ξ ]

c[ξ ]= 1
2 0

1

∫ ‖
d
dt
ξ(t)‖2 dt +θ * f [ξ ]

Smoothness	cost	 Learned	cost	

Local	Trajectory	Op-miza-on	(LTO)	

51	

•  Input:	Ini/al	path	(sampled	graph	path	or	smooth	
random	path),	learned	cost	func/on	

•  Output:	Smoothed	final	trajectory	sa/sfying	human	
preferences	 Experimental	Results	

52	
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Setup	

•  Binary	state-dependent	features	(~95)	
•  Histograms	of	distances	to	objects	
•  Histograms	of	end-effector	orienta/on	
•  Object	specific	features	(electronic	vs	non-electronic)	
•  Approach	direc/on	w.r.t	goal	

•  Comparison:		
•  Human	demonstra/ons	
•  Obstacle	avoidance	planner	(CHOMP)	
•  Locally	op/mal	IOC	approach	(similar	to	Max-Margin	
planning,	Ratliff	et.	al.,	2007)	

	
53	

Laptop	task:	Demonstra-on		
(	Not	part	of	training	set)	
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Laptop	task:	LTO	+	Discrete	graph	path	
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Laptop	task:	LTO	+	Smooth	random	path	

56	
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Sta-s-cs	for	Laptop	task	
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