12/6/15

Inverse Optimal Control
(Inverse Reinforcement Learning)

Most slides by Drew Bagnell
Carnegie Mellon University
Rl'and ML
http://robotwhisperer.org

Optimal Control Solution

X Cost Map

(S¢hsputdata)

Y'Y
~ (@athug) goal)

2-D
Planner

Y
(Path to goal)

12/6/15

Mode 1: Training example

Mode 1: Training example

Mode 1: Learned behavior

Mode 1: Learned behavior

12/6/15

Mode 1: Learned cost map

Mode 2: Training example

Mode 2: Training example

Mode 2: Learned behavior

12/6/15

Mode 2: Learned behavior

Mode 2: Learned cost map

Feature vector

Cost j'N'F
Weighting
vector

Ratliff, Bagnell, Zinkevich 2005
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

(g . Hioh Cost

\ (wi@, Low Cost)

Learn F,

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006
Silver, Bagnell, Stentz, RSS 2008

(&3, High Cost)![Fi]

(@™, Low Cos

Learn F,

Ratliff, Bagnell, Zinkevich, ICML 2006
Ratliff, Bradley, Bagnell, Chestnutt, NIPS 2006

12/6/15

example path

Silver, Bagnell, Stentz, RSS 2008

Ratliff, Bradley, Chesnutt,
Bagnell 06

Zucker, Ratliff, Stolle,
Chesnutt, Bagnell,
Atkeson, Kuffner 09

Learned Cost Function Examples

12/6/15

Learned Cost Function Examples Learned Cost Function Examples

Mimicry i‘“?lies
prediction

Pedestrian Trajectory Prediction

12/6/15

Pedestrian Trajectory Prediction Pedestrian Trajectory Prediction

Pedestrian Trajectory Prediction Pedestrian Trajectory Prediction

(Using O(1) Bayes’
Rule for Goals)

12/6/15

Staying out of People’s Path

Car Prediction

Learning Manipulation Preferences

¢ Input: Human demonstrations of preferred behavior
(e.g., moving a cup of water upright without spilling)

¢ Output: Learned cost function that results in trajectories
satisfying user preferences

N\

Demonstration(s)

12/6/15

/\/_). °

Demonstration(s) Graph

/\/_>

Demonstration(s) Graph

g

Demonstration(s) Graph Projection

e

Demonstration(s) Graph

Projection

12/6/15

e

Demonstration(s) Graph Projection

Learned cost

e

Demonstration(s) Graph Projection

!
T
N

Di
iscrete sampled Learned cost
paths

e

Demonstration(s) Graph Projection
C')utqu Discrete sampled Learned cost
trajectories paths

i

Demonstration(s) Graph Projection

Discrete ¢
MaxEnt 10C

AL~ ST

Output Discrete sampled

- : L
trajectories paths earned cost

10

12/6/15

-4

Demonstration(s) Graph Pro;ectlon

Local Trajectory
Optimization

A

(?utpuf Discrete sampled Learned cost
trajectories paths

~ o

Demonstration(s)

NV

Output
trajectories

KT

Graph Pro;ectlon

Discrete
MaxEnt I0C

T
N

Discrete sampled Learned cost
paths

Discrete MaxEnt I0C

* Input: Expert demonstrations for a specific
task, obstacle data, feature functions

* Output: Cost function (9*), discrete path
samples satisfying user preferences

* Steps:
1. Graph generation
2. Projection
3. Learning the cost function
4. Sampling discrete paths from the graph

2D obstacle avoidance task

Y-position (m)

-1 0 1 2
X—position (m)

2D state: (x,y)

11

12/6/15

Graph generation

e Goal: Construct a graph in the robot’s configuration
space providing good coverage

/F
\l

Y-position (m)

L

Y-position (m)

= [= [)
X-position (m) X-position (m)

Projection

* Goal: Project the continuous demonstration onto the
graph, resulting in a discrete graph path

¢ Use a modified Dijkstra’s algorithm minimizing sum of:
— Length of discrete path (Euclidean)
— Distance to continuous demonstration

Y—position (m)

0 1 2 > 0 i
X-position (m) X-position (m)

Learning the cost function

Goal: Given projected demonstrations, learn the cost
function

.

Learn feature weights (§*) using softened value
iteration on the discrete graph (Maxent 10C - Ziebart et al., 2008)
— State dependent features (eg: Distance to obstacles)

i

Demonstration(s) Graph Projection

Discrete ¢
MaxEnt 10C

AL~ ST

Output Discrete sampled

- : L
trajectories paths earned cost

12

12/6/15

-4

Demonstration(s) Graph Pro;ectlon
Local Trajectory
Optimization
(?utpuf Discrete sampled Learned cost
trajectories paths

Local Trajectory Optimization

* Sampled discrete graph paths are jerky and cannot be
executed on a real robot

* Naive smoothing of the graph path can result in
trajectories with high task-related cost

¢ We add a smoothness regularizer (squared velocity) to
the learned cost function and optimize via local
trajectory optimization (LTO)

&= argminc(¢]
1pt,d
c[§1=§jollzé<r)||z a0 /181

T T
Smoothness cost

Learned cost

Y-position (m)

Local Trajectory Optimization (LTO)
 Input: Initial path (sampled graph path or smooth
random path), learned cost function

¢ Output: Smoothed final trajectory satisfying human
preferences

Y-position (m)
-

|

0
X-position (m)

0 1
X-—position (m)

Experimental Results

13

12/6/15

Setup

* Binary state-dependent features (~95)
 Histograms of distances to objects
* Histograms of end-effector orientation
* Object specific features (electronic vs non-electronic)
* Approach direction w.r.t goal

* Comparison:
* Human demonstrations
* Obstacle avoidance planner (CHOMP)

« Locally optimal I0C approach (similar to Max-Margin
planning, Ratliff et. al., 2007)

Laptop task: Demonstration

(Not part of training set)

1

- N
DIDS ELECTRONIS CTS. TN

Laptop task: LTO + Discrete graph path

Laptop task: LTO + Smooth random path

14

12/6/15

Statistics for Laptop task

Method % Points in End-Effector % Points
collision |normal deviation (deg.)| above laptop
Human Demonstration 27 7.4 21

(Obstacle avoidance planner 129 18.2 17.3

15

