Inverse Optimal Control (Inverse Reinforcement Learning)

Most slides by Drew Bagnell Carnegie Mellon University RI and ML http://robotwhisperer.org

Pedestrian Trajectory Prediction

Learning Manipulation Preferences

- Input: Human demonstrations of preferred behavior (e.g., moving a cup of water upright without spilling)
- **Output:** Learned cost function that results in trajectories satisfying user preferences

Discrete MaxEnt IOC

- *Input:* Expert demonstrations for a specific task, obstacle data, feature functions
- **Output:** Cost function (θ^*), discrete path samples satisfying user preferences
- Steps:
 - 1. Graph generation
 - 2. Projection
 - 3. Learning the cost function
 - 4. Sampling discrete paths from the graph

Setup

- Binary state-dependent features (~95)
 - Histograms of distances to objects
 - Histograms of end-effector orientation
 - Object specific features (electronic vs non-electronic)
 - Approach direction w.r.t goal

• Comparison:

- Human demonstrations
- Obstacle avoidance planner (CHOMP)
- Locally optimal IOC approach (similar to Max-Margin planning, Ratliff et. al., 2007)

Laptop task: Demonstration (Not part of training set)

Statistics for Laptop task			
Method	% Points in collision	End-Effector normal deviation (deg.)	% Points above laptop
Human Demonstration	2.7	7.4	2.1
Obstacle avoidance planner	12.9	18.2	17.3
Coarse, discrete graph sample	12.8	9.9	11.1
Local Trajectory Optimizer + Graph samples	4.0	5.3	1.2
Local Trajectory Optimizer + Random path	4.5	5.5	3.1
			57