
12/6/15	

1	

	
Inverse	Op/mal	Control	

(Inverse	Reinforcement	Learning)	

Most	slides	by	Drew	Bagnell	
Carnegie	Mellon	University	

RI	and	ML	
hGp://robotwhisperer.org	

Learning Y
(Path to goal)

X
(Sensor Data)

Y
(Output)

X
(Input)

Op/mal	Control	Solu/on	

Learning

Y
(Path to goal)

2-D
Planner

Cost Map

12/6/15	

2	

Mode 1: Training example
 Mode 1: Training example

Mode 1: Learned behavior
 Mode 1: Learned behavior

12/6/15	

3	

Mode 1: Learned cost map
 Mode 2: Training example

Mode 2: Training example
 Mode 2: Learned behavior

12/6/15	

4	

Mode 2: Learned behavior
 Mode 2: Learned cost map

Ratliff,	Bagnell,	Zinkevich	2005	
Ratliff,		Bradley,	Bagnell,	ChestnuG,	NIPS	2006	
Silver,	Bagnell,	Stentz,	RSS	2008	

w'
Weighting

vector

Cost =

Feature vector

F

w=[],	F=[]	

Ratliff,	Bagnell,	Zinkevich,	ICML	2006	
Ratliff,		Bradley,	Bagnell,	ChestnuG,	NIPS	2006	
Silver,	Bagnell,	Stentz,	RSS	2008	

Learn F1

(, High Cost)

(, Low Cost)

12/6/15	

5	

w=[w1],	F=[F1]	

Ratliff,	Bagnell,	Zinkevich,	ICML	2006	
Ratliff,		Bradley,	Bagnell,	ChestnuG,	NIPS	2006	
Silver,	Bagnell,	Stentz,	RSS	2008	

Learn F2

(, High Cost)

(, Low Cost)

Ratliff,	Bradley,	ChesnuG,	
	Bagnell	06	

Zucker,	Ratliff,	Stolle,	
ChesnuG,	Bagnell,	
Atkeson,	Kuffner	09	

Learned	Cost	Func/on	Examples	

12/6/15	

6	

Learned	Cost	Func/on	Examples	 Learned	Cost	Func/on	Examples	

Mimicry im
plies

Prediction
Pedestrian Trajectory Prediction

12/6/15	

7	

Pedestrian Trajectory Prediction
 Pedestrian Trajectory Prediction

Pedestrian Trajectory Prediction

(Using O(1) Bayes’
Rule for Goals)

Pedestrian Trajectory Prediction

12/6/15	

8	

Staying out of People’s Path

Car Prediction

Learning	Manipula-on	Preferences	
•  Input:	Human	demonstra/ons	of	preferred	behavior	

(e.g.,	moving	a	cup	of	water	upright	without	spilling)	
	

•  Output:	Learned	cost	func/on	that	results	in	trajectories	
sa/sfying	user	preferences	

	

31	 32	

Demonstra-on(s)	

12/6/15	

9	

33	

Demonstra-on(s)	 Graph	

34	

Demonstra-on(s)	 Graph	

35	

Demonstra-on(s)	 Graph	 Projec-on	

36	

Demonstra-on(s)	 Graph	 Projec-on	

12/6/15	

10	

37	

Demonstra-on(s)	 Graph	 Projec-on	

Learned	cost	

38	

Demonstra-on(s)	 Graph	 Projec-on	

Discrete	sampled	
paths	 Learned	cost	

39	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

40	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Discrete	
MaxEnt	IOC	

12/6/15	

11	

41	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Local	Trajectory	
Op-miza-on	

42	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Discrete	
MaxEnt	IOC	

Discrete	MaxEnt	IOC	

•  Input:	Expert	demonstra/ons	for	a	specific	
task,	obstacle	data,	feature	func/ons	

•  Output:	Cost	func/on	(*),	discrete	path	
samples	sa/sfying	user	preferences	

•  Steps:	
1. Graph	genera/on	
2. Projec/on	
3.  Learning	the	cost	func/on	
4. Sampling	discrete	paths	from	the	graph	

✓

43	

2D	obstacle	avoidance	task	

44	
2D	state:	(x,y)		

12/6/15	

12	

Graph	genera-on	
•  Goal:	Construct	a	graph	in	the	robot’s	configura/on	

space	providing	good	coverage	

45	

Projec-on	
•  Goal:	Project	the	con/nuous	demonstra/on	onto	the	

graph,	resul/ng	in	a	discrete	graph	path	

•  Use	a	modified	Dijkstra’s	algorithm	minimizing	sum	of:	
–  Length	of	discrete	path	(Euclidean)	
–  Distance	to	con/nuous	demonstra/on	

46	

Learning	the	cost	func-on	
•  Goal:	Given	projected	demonstra/ons,	learn	the	cost	

func/on	
•  Learn	feature	weights	(*)	using	soLened	value	

itera-on	on	the	discrete	graph	(MaxEnt	IOC	-	Ziebart	et	al.,	2008)	

–  State	dependent	features	(eg:	Distance	to	obstacles)	

✓

47	 48	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Discrete	
MaxEnt	IOC	

12/6/15	

13	

49	

Demonstra-on(s)	 Graph	 Projec-on	

Output	
trajectories	

Discrete	sampled	
paths	 Learned	cost	

Local	Trajectory	
Op-miza-on	

Local	Trajectory	Op-miza-on	
•  Sampled	discrete	graph	paths	are	jerky	and	cannot	be	

executed	on	a	real	robot	

•  Naïve	smoothing	of	the	graph	path	can	result	in	
trajectories	with	high	task-related	cost	

•  We	add	a	smoothness	regularizer	(squared	velocity)	to	
the	learned	cost	func/on	and	op/mize	via	local	
trajectory	op/miza/on	(LTO)	

	

50	

ξ * = argmin
ξ
c[ξ]

c[ξ]= 1
2 0

1

∫ ‖
d
dt
ξ(t)‖2 dt +θ * f [ξ]

Smoothness	cost	 Learned	cost	

Local	Trajectory	Op-miza-on	(LTO)	

51	

•  Input:	Ini/al	path	(sampled	graph	path	or	smooth	
random	path),	learned	cost	func/on	

•  Output:	Smoothed	final	trajectory	sa/sfying	human	
preferences	 Experimental	Results	

52	

12/6/15	

14	

Setup	

•  Binary	state-dependent	features	(~95)	
•  Histograms	of	distances	to	objects	
•  Histograms	of	end-effector	orienta/on	
•  Object	specific	features	(electronic	vs	non-electronic)	
•  Approach	direc/on	w.r.t	goal	

•  Comparison:		
•  Human	demonstra/ons	
•  Obstacle	avoidance	planner	(CHOMP)	
•  Locally	op/mal	IOC	approach	(similar	to	Max-Margin	
planning,	Ratliff	et.	al.,	2007)	

	
53	

Laptop	task:	Demonstra-on		
(Not	part	of	training	set)	

54	

Laptop	task:	LTO	+	Discrete	graph	path	

55	

Laptop	task:	LTO	+	Smooth	random	path	

56	

12/6/15	

15	

Sta-s-cs	for	Laptop	task	

57	

