
CSE 571 - Robotics

Homework 2 - EKF and Particle Filter Localization

Due Thursday, November 3 at 11:59 PM

The key goal of this homework is to get an understanding of the properties of Kalman filters and Particle
filters for state estimation. There are two parts to the homework - a written assignment and a programming
assignment. There are two questions in the written assignment. For the programming assignment, you will be
implementing an Extended Kalman Filter (EKF) and a Particle Filter (PF) for landmark based localization. You
will also analyze their performance under various conditions. The zip file containing the code for this homework
can be found on the class website (https://courses.cs.washington.edu/courses/cse571/16au/).

Useful reading material: Lecture notes, Chapters 3,4,5,7 & 8 of Probabilistic Robotics, Thrun, Burgard and
Fox (pdf shared with class)

1 Writing assignments

1.1 Kalman Gain

Recall that if the random variables x1 and x2 are distributed according two Gaussian distributions:

p(x1) = N (µ1, σ
2
1)

p(x2) = N (µ2, σ
2
2)

then, their product distribution is still a Gaussian:

p(x1)p(x2) ∼ N
(

σ2
2

σ2
1 + σ2

2

µ1 +
σ2

1

σ2
1 + σ2

2

µ2,
1

σ−2
1 + σ−2

2

)
Show that in 1D, the Kalman filter correction step shown below is equivalent to a multiplication of the

predicted state (N (µ̄, σ̄2)) and observation (N (z, σ2
obs)) Gaussians with mean and variance given by:

µ = µ̄+K(z − µ̄)

σ2 = (1−K)σ̄2

where K = σ̄2

σ̄2+σ2
obs

.

1.2 Motion Model Jacobian

The Kalman Filter tracks the state by repeatedly predicting the next state distribution given the current state
distribution and the control (prediction step) followed by correcting the prediction based on the observations

1

https://courses.cs.washington.edu/courses/cse571/16au/

Figure 1: Odometry motion model.

(correction step). Given the current state distribution (µt,Σt) and the current control (ut), we use a motion
model (g) to generate predictions of the next state (µ′t+1):

µ′t+1 = g(µt, ut)

While the Linear Kalman Filter assumes a linear motion model, the model can be non-linear for the Extended
Kalman Filter. We then linearize this model around the current state and control for predictions using the EKF.
For this problem, we will try to linearize the non-linear odometry motion model we discussed in class (Section
5.4 of the book).
Our state is the 2D position of the robot and it’s orientation (µt =< xt, yt, θt >). The applied control is of the
form: (ut =< δrot1, δtrans, δrot2 >). The odometry motion model assumes that the robot rotates in place first by
an angle equal to δrot1, followed by a translation of δtrans and a final rotation by δrot2. Fig: 1 shows a pictorial
representation of the motion model.

The equations for the motion model (g) are as follows:

x′t+1 = xt + δtrans ∗ cos(θt + δrot1)

y′t+1 = yt + δtrans ∗ sin(θt + δrot1)

θ′t+1 = θt + δrot1 + δrot2

where µ′t+1 =< x′t+1, y
′
t+1, θ

′
t+1 > is the prediction of the motion model.

For the prediction step of the EKF, we need compute a linearized approximation of the non-linear motion
model (g) around the current state (µt) and the current control (ut). Specifically, you need to compute the
Jacobians w.r.t state G = ∂g

∂µt
and control V = ∂g

∂ut
, where:

G =

∂x′

∂x
∂x′

∂y
∂x′

∂θ
∂y′

∂x
∂y′

∂y
∂y′

∂θ
∂θ′

∂x
∂θ′

∂y
∂θ′

∂θ

V =

∂x′

∂δrot1
∂x′

∂δtrans

∂x′

∂δrot2
∂y′

∂δrot1

∂y′

∂δtrans

∂y′

∂δrot2
∂θ′

∂δrot1
∂θ′

∂δtrans

∂θ′

∂δrot2

with the subscripts t and t+ 1 dropped out.

2

2 Programming assignment - Landmark Based Localization

In this assignment, you will implement an Extended Kalman Filter (EKF) and a Particle Filter(PF) for localizing
a robot based on landmarks. The state of the robot is it’s 2D position and orientation (< x, y, θ >). We will
model the motion of the robot using the odometry based motion model, with our control representation being
(u =< δrot1, δtrans, δrot2). We assume that there are landmarks present in the robot’s environment. The robot
receives the bearings to the landmarks and the ID of the landmarks as observations: z =<bearing, landmark
ID>. Additionally, we assume a noise model for the odometry motion model with parameters α (Table 5.6 of
the book) and a separate noise model for the bearing observations with parameter β (Section 6.6 of the book).
The landmark ID observation is noise free.

At each timestep, the robot starts from the current state and moves according to the control input. The
robot then receives a landmark observation from the world. This information needs to be used by you to localize
the robot over the whole time-sequence, by using an EKF or a PF.

2.1 Extended Kalman Filter

In the Extended Kalman Filter, you will estimate a Gaussian approximation of the robot state at each time
N (µt,Σt), based on the distribution at the previous time N (µt−1,Σt−1), the applied control (ut−1) and the
observation (zt). Alg. 1 provides a high-level pseudocode for the EKF update (refer to the slides for a detailed
explanation).

Algorithm 1 Extended Kalman Filter - TO BE IMPLEMENTED in ekfUpdate.m and run.m

Inputs: State: µt−1,Σt−1, Control: ut−1, Observation: zt, Noise parameters: α, β
Output: Next State: µt,Σt

Prediction step:
Prediction mean using motion model: µ̄t = g(µt−1, ut−1) . Use prediction.m
Motion model Jacobians Gt and Vt . From written assignment
Motion noise Mt using parameters α . Use noiseFromMotion.m
Prediction co-variance: Σ̄t = GtΣt−1G

T
t + VtMtV

T
t

Correction step:
Expected observation at ẑt . Use observation.m
Observation Jacobian Ht and noise Qt = β . Qt = bearing noise (β). ID noise = 0
Predicted observation co-variance: St = HtΣ̄tH

T
t +Qt

Kalman Gain: K = Σ̄tH
T
t S

−1
t

Next state mean: µt = µ̄t +Kt(zt − ẑt) . Use minimizedAngle.m to limit angle differences to -pi to pi
Next state co-variance: Σt = (I −KtHt)Σ̄t

Compute likelihood of observation (pOfZ) . Use likelihood.m

You need to implement the EKF update steps in the file ekfUpdate.m. You also need to change the file
run.m to ensure that the outputs of the EKF run are not reset. For additional experiments and plots, you can
look at the files run.m, runExperiments.m.

You should get the following results for a successful implementation of the EKF on MATLAB/Octave (results
not same due to random number generators):

MATLAB:

3

run(200, false, 0.001, true) -->

meanPositionError = 7.2436

meanMahalanobisError = 3.0394

ANEES = 1.0131

meanPOfZ = 2.1214

Octave:

run(200, false, 0.001, true) -->

meanPositionError = 5.2527

meanMahalanobisError = 1.9864

ANEES = 0.66212

meanPOfZ = 2.1756

2.2 Particle Filter

Unlike the EKF which represents the state as a Gaussian, the particle filter represents the state distribution via
sampled particles. At each time t, the particle filter takes as input the set of particles from the previous time
pt−1, uses the control ut and the (noisy) motion model to propagate these particles forward to generate candidate
particles for the next step (p̄t). These particles are then weighted based on the observed measurement zt and a
new set of particles are sampled from this weighted set of particles. These particles are used as the estimates for
the state distribution at the current step pt. Alg: 2 provides a high-level pseudocode for the EKF update (refer
to the slides for a detailed explanation).

Algorithm 2 Particle Filter - TO BE IMPLEMENTED in pfUpdate.m, resample.m and run.m

Inputs: Particles: p1t−1, p
2
t−1, . . . , p

n
t−1, Control: ut−1, Observation: zt, Noise parameters: α, β

Output: Particles at next step: p1t , p
2
t , . . . , p

n
t

Prediction step:
Propagate particles through noisy motion model ∀i, p̄it = g(pit−1, ut−1, α) . Use sampleOdometry.m

Correction step:
Compute importance weight for all particles . Use observation.m and likelihood.m
Normalize importance weights
Resample based on importance weights - Systematic Resampling . To be implemented in resample.m
Compute mean, var and avg. observation likelihood (pOfZ) for predicted / final particles . Use meanAndVariance.m

For the particle filter, you need to implement the overall algorithm in pfUpdate.m as well as the resam-
pling step in resample.m. We will use the systematic resampling technique discussed in class for this assignment.
As before, you also need to change the file run.m to ensure that the outputs of the EKF run are not reset. For
additional experiments and plots, you can look at the files run.m, runExperiments.m.

You should get the following results for a successful implementation of the PF on MATLAB/Octave (results
not same due to random number generators):

MATLAB:

run(200, true, 0.001, true) -->

meanPositionError = 8.2722

meanMahalanobisError = 8.2194

ANEES = 2.7398

4

meanPOfZ = 2.1447

Octave:

run(200, true, 0.001, true) -->

meanPositionError = 7.1791

meanMahalanobisError = 7.5702

ANEES = 2.5234

meanPOfZ = 2.1626

2.3 Writeup

In addition to the code, you need to provide a writeup analyzing the performance of your filters under
various conditions. The file runExperiments.m can be quite useful for generating these tables and plots. Your
writeup must include the following:

• A plot showing the noise free path, real robot path, and filter path for each filter under the default (provided)
parameters. (2 plots total).

• A table of values and corresponding plots of the mean position error as the alpha and beta factors range
over r = [1/64, 1/16, 1/4, 1, 4, 16, 64] (note that this is between 1/8 and 8 times the default noise values)
for both filters. This means that one run should be, for example: run(200, false, 0.001, true, false,
[1/64,1/64,1/64,1/64]) (2 tables, 2 plots).

• Tables and plots of mean position error and ANEES as noise for data + filter vary over r and the number
of particles varies over [20, 100, 300]. For example, one run should be run(200, true, 0.001, true,
false, [1/64,1/64,1/64,1/64], 20). Note that you have already produced values for n = 100 earlier. (2
additional tables, 2 additional plots).

• Extra Credit: Tables and plots for both filters of mean position error, ANEES, and pOfZ in which the
actual data has the default noise, but the filter noise estimates range over r. For example, one run should
be run(200, false, 0.001, true, false, [1,1/64,1,1/64]). (6 tables, 6 plots).

• Extra Credit: For each set of tables and plots, you should comment on what you see! What trends do
you see? Which filters perform better under which conditions?

• Extra Credit: Give an example of when particle starvation can occur for the particle filter. How can this
be avoided?

2.4 Code overview

This section gives a brief overview of the functions available to you in the code:

Things to implement:

run.m -- Main update loop, should call ekfUpdate and pfUpdate

ekfUpdate.m -- EKF update

pfUpdate.m -- Particle filter update

resample.m -- Particle filter resampling, called by pfUpdate

runExperiments.m -- Useful later for running multiple experiments

5

Tools:

You should not need to use these files, but look at them if you like:

generateScript.m -- Generates data according to initial mean and noise parameters

generateMotion.m -- Simulates simple motion commands

You may find these files useful:

prediction.m -- Deterministically move robot according to given motion (odometry motion model)

observation.m -- Returns the observation of the specified marker given the current state

sampleOdometry.m -- Noisy samples from the odometry motion model (Implements Table 5.6 from book)

sample.m -- Generates samples from a covariance matrix

meanAndVariance.m -- Mean and var for a set of unweighted samples (illustrates handling angles)

getfieldinfo.m -- Gets field information

minimizedAngle.m -- Normalizes an angle to [-pi, pi] (use this when dealing with angles)

endPoint.m -- Returns the location of an observation

noiseFromMotion.m -- Generate motion noise variances based on alphas

matlab.el -- Customization file for emacs

Display functions:

plotcircle.m -- Draws a circle

plotcov2d.m -- Draws a 2-D covariance matrix

plotfield.m -- Draws the field with landmarks

plotmarker.m -- Draws an ’x’ at a specified point (useful for drawing samples)

plotrobot.m -- Draws the robot

plotSamples.m -- Plots particles from the pf

plotLine.m -- Plot a ray (origin, angle, length)

Data format (see run.m and generateScript.m):

State : [x,y,θ];
Observation : [bearing to landmark, landmark ID];

Control : [δrot1,δtrans,δrot2];

2.4.1 Hints

• Make sure to call minimizedAngle() any time an angle or angle difference could exceed [-pi,pi].

• Try visualizing the extra co-variance matrices returned by the EKF.

• Turn off plotting for a significant speedup. Enclose all plotting commands within blocks so they can be
turned off with the run parameter.

• It’s easy to visualize multiple plots. You can also zoom in on a plot (when it’s static, for example when the
pause time is negative).

• Make sure to use the low variance systematic sampler from the textbook / slides. It gives you smoother
particle distribution, and also requires only a single random number per resampling step. This will make
your runs consistent with the reference implementation.

6

3 Submission

You will be using Catalyst dropbox (https://catalyst.uw.edu/collectit/dropbox/summary/barun/38890)
for submitting the homework. You need to submit the code and plots including any helper functions you use.
More instructions for submission will be available in the dropbox. The written assignments can be submitted
either in writing or electronically along with the code.

7

https://catalyst.uw.edu/collectit/dropbox/summary/barun/38890

	Writing assignments
	Kalman Gain
	Motion Model Jacobian

	Programming assignment - Landmark Based Localization
	Extended Kalman Filter
	Particle Filter
	Writeup
	Code overview
	Hints

	Submission

