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CSE-571
Robotics 

SLAM: Simultaneous 
Localization and Mapping

Many slides courtesy of Ryan Eustice, 
Cyrill Stachniss, John Leonard
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Given:

¤ The robot’s controls

¤ Observations of nearby features

Estimate:
¤ Map of features

¤ Path of the robot

The SLAM Problem
A robot is exploring an 
unknown, static environment.
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SLAM Applications
Indoors

Space

Undersea

Underground

Illustration of SLAM 
without Landmarks

Courtesy J. Leonard

With only dead reckoning, vehicle 
pose uncertainty grows without 
bound
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Illustration of SLAM 
without Landmarks

With only dead reckoning, vehicle 
pose uncertainty grows without 
bound

Courtesy J. Leonard

Mapping with Raw Odometry

Repeat, with Measurements of 
Landmarks

¨ First position: two features observed

Courtesy J. Leonard

Illustration of SLAM with Landmarks

¨ Second position: two new features 
observed

Courtesy J. Leonard
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Illustration of SLAM with Landmarks

¨ Re-observation of first two features 
results in improved estimates for 
both vehicle and feature

Courtesy J. Leonard

Illustration of SLAM with Landmarks

¨ Third position: two additional 
features added to map

Courtesy J. Leonard

Illustration of SLAM with Landmarks

¨ Re-observation of first four features 
results in improved location estimates 
for vehicle and all features

Courtesy J. Leonard

Illustration of SLAM with Landmarks

¨ Process continues as the vehicle moves 
through the environment

Courtesy J. Leonard
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SLAM Using Landmarks

MIT Indoor Track

Courtesy J. Leonard

Test Environment (Point Landmarks)

Courtesy J. Leonard

View from Vehicle

Courtesy J. Leonard

1. Move
2. Sense
3. Associate measurements with known features
4. Update state estimates for robot and previously mapped features
5. Find new features from unassociated measurements
6. Initialize new features
7. Repeat

SLAM Using Landmarks

MIT Indoor Track
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Comparison with Ground Truth

odometry

Courtesy J. Leonard
SLAM result

Simultaneous Localization and 
Mapping (SLAM)

¨ Building a map and locating the robot in the map at 
the same time

¨ Chicken-and-egg problem

map

localize

Courtesy: Cyrill Stachniss

Definition of the SLAM Problem

Given
¤ The robot’s controls

¤ Observations

Wanted
¤ Map of the environment

¤ Path of the robot

Courtesy: Cyrill Stachniss

Three Main Paradigms

Kalman 
filter

Particle 
filter

Graph-
based

Courtesy: Cyrill Stachniss
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Bayes Filter

¨ Recursive filter with prediction and correction step

¨ Prediction

¨ Correction

Courtesy: Cyrill Stachniss

EKF for Online SLAM

¨ We consider here the Kalman filter as a solution to 
the online SLAM problem

Courtesy: Thrun, Burgard, Fox

Extended Kalman Filter Algorithm

Courtesy: Cyrill Stachniss

EKF SLAM

¨ Application of the EKF to SLAM
¨ Estimate robot’s pose and locations of landmarks in 

the environment
¨ Assumption: known correspondences
¨ State space (for the 2D plane) is

Courtesy: Cyrill Stachniss
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EKF SLAM: State Representation

¨ Map with n landmarks: (3+2n)-dimensional 
Gaussian

¨ Belief is represented by 

Courtesy: Cyrill Stachniss

EKF SLAM: State Representation

¨ More compactly

Courtesy: Cyrill Stachniss

EKF SLAM: State Representation

¨ Even more compactly (note:                 ) 

Courtesy: Cyrill Stachniss

EKF SLAM: Filter Cycle

1. State prediction
2. Measurement prediction
3. Measurement
4. Data association
5. Update

Courtesy: Cyrill Stachniss
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EKF SLAM: State Prediction

Courtesy: Cyrill Stachniss

EKF SLAM: Measurement 
Prediction

Courtesy: Cyrill Stachniss

EKF SLAM: Obtained 
Measurement

Courtesy: Cyrill Stachniss

EKF SLAM: Data Association and 
Difference Between h(x) and z

Courtesy: Cyrill Stachniss
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EKF SLAM: Update Step

Courtesy: Cyrill Stachniss

EKF SLAM: Concrete Example

Setup
¨ Robot moves in the 2D plane
¨ Velocity-based motion model
¨ Robot observes point landmarks
¨ Range-bearing sensor
¨ Known data association
¨ Known number of landmarks

Courtesy: Cyrill Stachniss

Initialization

¨ Robot starts in its own reference frame (all 
landmarks unknown) 

¨ 2N+3 dimensions

Courtesy: Cyrill Stachniss

Extended Kalman Filter Algorithm

Courtesy: Cyrill Stachniss
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Prediction Step (Motion)

¨ Goal: Update state space based on the robot’s 
motion

¨ Robot motion in the plane

¨ How to map that to the 2N+3 dim space?

Courtesy: Cyrill Stachniss

Update the State Space

¨ From the motion in the plane

¨ to the 2N+3 dimensional space

Courtesy: Cyrill Stachniss

Extended Kalman Filter Algorithm

DONE

Courtesy: Cyrill Stachniss

Update Covariance

¨ The function   only affects the robot’s motion and not 
the landmarks  

Jacobian of the motion (3x3)

Identity (2N x 2N)

Courtesy: Cyrill Stachniss
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This Leads to the Time Propagation

Apply & DONE

Courtesy: Cyrill Stachniss

Extended Kalman Filter Algorithm

DONE

DONE

Courtesy: Cyrill Stachniss

EKF SLAM: Correction Step

¨ Known data association
¨ :  i-th measurement at time t observes the 

landmark with index j
¨ Initialize landmark if unobserved 
¨ Compute the expected observation
¨ Compute the Jacobian of 
¨ Proceed with computing the Kalman gain

Courtesy: Cyrill Stachniss

Range-Bearing Observation

¨ Range-Bearing observation
¨ If landmark has not been observed 

observed
location of
landmark j

estimated
robot’s
location

relative measurement

Courtesy: Cyrill Stachniss
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Jacobian for the Observation

¨ Based on 

¨ Compute the Jacobian

Courtesy: Cyrill Stachniss

Jacobian for the Observation

¨ Use the computed Jacobian

¨ map it to the high dimensional space

Courtesy: Cyrill Stachniss

Next Steps as Specified…

DONE

DONE

Courtesy: Cyrill Stachniss

Extended Kalman Filter Algorithm

DONE

DONE

Apply & DONE

Apply & DONE

Apply & DONE

Courtesy: Cyrill Stachniss
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EKF SLAM – Correction (1/2)

Courtesy: Cyrill Stachniss

EKF SLAM – Correction (2/2)

Courtesy: Cyrill Stachniss

EKF SLAM Complexity

¨ Cubic complexity depends only on the measurement 
dimensionality 

¨ Cost per step: dominated by the number of 
landmarks:

¨ Memory consumption: 
¨ The EKF becomes computationally intractable for 

large maps!

Courtesy: Cyrill Stachniss

Online SLAM Example
70
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EKF SLAM Correlations

¨ In the limit, the landmark estimates 
become fully correlated

Courtesy: Dissanayake 

72

EKF SLAM Correlations

¨ Approximate the SLAM posterior with a high-dimensional 
Gaussian [Smith & Cheesman, 1986] …

¨ Single hypothesis data association

Blue path = true path   Red path = estimated path   Black path = odometry

Courtesy: M. Montemerlo

EKF SLAM Correlations

Map              Correlation matrix

Courtesy: M. Montemerlo

EKF SLAM Correlations

Map              Correlation matrix

Courtesy: M. Montemerlo
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EKF SLAM Correlations

Map              Correlation matrix

Courtesy: M. Montemerlo

EKF SLAM Uncertainties

¨ The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically

¨ New landmarks are initialized with maximum uncertainty 

Courtesy: Dissanayake

77

Data Association in SLAM

¨ In the real world, the mapping between observations and 
landmarks is unknown

¨ Picking wrong data associations can have catastrophic
consequences
¤ EKF SLAM is brittle in this regard

¨ Pose error correlates data associations

Robot pose
uncertainty

Data Association
¨ Given an environment map 

¨ And a set of sensor observations 

¨ Associate observations with map 
elements

LaserVision
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Difficulties: clutter
¨ Influence of the type, density, precision and 

robustness of features considered:
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Laser scanner:

• Small amount of                         
features (n)

• Small amount of               
measurements (m)

• Low spuriousness

Low clutter

Difficulties: clutter
¨ Vertical Edge Monocular vision: 

¨ Many features (n large)
¨ Many measurements (m large)
¨ no depth information
¨ higher spuriousness
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High clutter

Difficulties: imprecision
¨ Both the sensor and the vehicle introduce imprecision

Vertical Edge Trinocular 
vision:

variable depth precision
good angular precision
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Robot imprecision:
introduces CORRELATED error

Loop-Closing

¨ Loop-closing means recognizing an already 
mapped area

¨ Data association under
¤ high ambiguity
¤ possible environment symmetries

¨ Uncertainties collapse after a loop-closure (whether 
the closure was correct or not)

Courtesy: Cyrill Stachniss
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Before the Loop-Closure

Courtesy: K. Arras

After the Loop-Closure

Courtesy: K. Arras

Example: Victoria Park Dataset

Courtesy: E. Nebot

Victoria Park: Data Acquisition

Courtesy: E. Nebot
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87

Victoria Park: EKF Estimate

Courtesy: E. Nebot

Victoria Park: EKF Estimate

Courtesy: E. Nebot

Victoria Park: Landmarks

Courtesy: E. Nebot

90

Victoria Park: Landmark 
Covariance

Courtesy: E. Nebot
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Sub-maps for EKF SLAM

[Leonard et al 1998]

Andrew Davison: MonoSLAM

93

EKF SLAM Summary

¨ Quadratic in the number of landmarks: O(n2)
¨ Convergence results for the linear case. 
¨ Can diverge if nonlinearities are large!
¨ Have been applied successfully in large-scale 

environments.
¨ Approximations reduce the computational complexity. 

Literature

EKF SLAM
¨ Thrun et al.: “Probabilistic Robotics”, Chapter 10
¨ Smith, Self, & Cheeseman: “Estimating Uncertain 

Spatial Relationships in Robotics”
¨ Dissanayake et al.: “A Solution to the Simultaneous 

Localization and Map Building (SLAM) Problem”
¨ Durrant-Whyte & Bailey: “SLAM Part 1” and “SLAM 

Part 2” tutorials

Courtesy: Cyrill Stachniss
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Graph-SLAM

•Full SLAM technique

•Generates probabilistic links

•Computes map only occasionally

•Based on Information Filter form

Graph-SLAM Idea

Information Form

•Represent posterior in canonical form

•One-to-one transform between 
canonical and moment representation

n vectorInformatio   
matrixn Informatio     

1

1

µx -

-

S=

S=W

  1

1

xµ -

-

W=

W=S

Information vs. Moment Form

Correlation matrix             Information matrix
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Graph-SLAM Idea (1) Graph-SLAM Idea (2)

Graph-SLAM Idea (3) Graph-SLAM Inference (1)
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Graph-SLAM Inference (2) Graph-SLAM Inference (3)

Mine Mapping Mine Mapping: Data Associations
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Efficient Map Recovery

• Information matrix inversion can be 
avoided if only best map estimate is 
required

•Minimize constraint function JGraphSLAM
using standard optimization 
techniques (gradient descent, Levenberg 
Marquardt, conjugate gradient)

Robot Poses and Scans [Lu and Milios 
1997]

• Successive robot poses  
connected by 
odometry

• Sensor readings yield 
constraints between 
poses

• Constraints 
represented by 
Gaussians

• Globally optimal 
estimate

ijijij QDD +=

ijijij QDD +=

[ ])|(maxarg ijij
X

DDP
i

Loop Closure

Before loop closure After loop closure

• Use scan patches to detect loop closure
• Add new position constraints
• Deform the network based on covariances of 

matches

Mapping the Allen Center
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3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.

Map Before Optimization

Map After Optimization Graph-SLAM Summary

• Adresses full SLAM problem
• Constructs link graph between poses and 

poses/landmarks
• Graph is sparse: number of edges linear in number 

of nodes
• Inference performed by building information 

matrix and vector (linearized form)
• Map recovered by reduction to robot poses, 

followed by conversion to moment representation, 
followed by estimation of landmark positions 

• ML estimate by minimization of JGraphSLAM
• Data association by iterative greedy search


