CSE-571 Robotics

Fast-SLAM Mapping

Dependencies

- □ Is there a dependency between the dimensions of the state space?
- ☐ If so, can we use the dependency to solve the problem more efficiently?
- □ In the SLAM context
 - □ The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Particle Filters

- □ Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- □ Sampling Importance Resampling (SIR) principle
 - □ Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling
- Typical application scenarios are tracking, localization, ...

Particle Filter Algorithm

1. Sample the particles from the proposal distribution

$$x_t^{[j]} \sim \pi(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

Resampling: Draw sample i with probability $\boldsymbol{w}_t^{[i]}$ and repeat J times

Particle Representation

☐ A set of weighted samples

$$\mathcal{X} = \left\{ \left\langle x^{[i]}, w^{[i]} \right\rangle \right\}_{i=1,\dots,N}$$

- $\hfill\Box$ Think of a sample as one hypothesis about the state
- □ For feature-based SLAM:

$$x = (x_{1:t}, \underbrace{m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y}})^T$$
landmarks

Courtesy: C. Stachnis

Dimensionality Problem

Particle filters are effective in low dimensional spaces as the likely regions of the state space need to be covered with samples.

$$x = (x_{1:t}, m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y})^T$$
high-dimensional

Courtesy: C. Stachniss

Can We Exploit Dependencies Between the Different Dimensions of the State Space?

$$x_{1:t}, m_1, \ldots, m_M$$

Courtesy: C. Stachniss

If We Know the Poses of the Robot, Mapping is Easy!

$$\frac{x_{1:t}, m_1, \ldots, m_M}{\checkmark}$$

Key Idea

$$\frac{x_{1:t}, m_1, \ldots, m_M}{\checkmark}$$

If we use the particle set only to model the robot's path, each sample is a path hypothesis. For each sample, we can compute an individual map of landmarks.

Courtesy: C. Stachnis

Rao-Blackwellization

□ Factorization to exploit dependencies between variables:

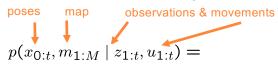
$$p(a,b) = p(b \mid a) p(a)$$

 $\ \square$ If $p(b \mid a)$ can be computed efficiently, represent only p(a) with samples and compute $p(b \mid a)$ for every sample

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

□ Factorization of the SLAM posterior



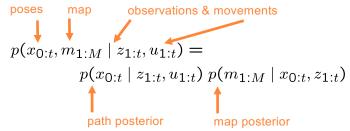
First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances in Neural Information Processing Systems, 1999

Courtesy: C. Stachnis

Rao-Blackwellization for SLAM

 $\hfill\Box$ Factorization of the SLAM posterior



First introduced for SLAM by Murphy in 1999

K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances in Neural Information Processing Systems, 1999

Rao-Blackwellization for SLAM

☐ Factorization of the SLAM posterior $p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) =$ $p(x_{0:t} \mid z_{1:t}, u_{1:t}) p(m_{1:M} \mid x_{0:t}, z_{1:t})$

Landmarks are conditionally independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachnis

Rao-Blackwellization for SLAM

 $\hfill \square$ Factorization of the SLAM posterior

$$p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) \stackrel{\cdot}{=} p(x_{0:t} \mid z_{1:t}, u_{1:t}) p(m_{1:M} \mid x_{0:t}, z_{1:t})$$

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) \prod_{i=1}^{M} p(m_i \mid x_{0:t}, z_{1:t})$$

First exploited in FastSLAM by Montemerlo et al., 2002

Courtesy: C. Stachniss

Rao-Blackwellization for SLAM

□ Factorization of the SLAM posterior

$$p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) = \\ p(x_{0:t} \mid z_{1:t}, u_{1:t}) p(m_{1:M} \mid x_{0:t}, z_{1:t}) \\ p(x_{0:t} \mid z_{1:t}, u_{1:t}) \prod_{i=1}^{M} p(m_i \mid x_{0:t}, z_{1:t})$$

2-dimensional EKFs!

First exploited in FastSLAM by Montemerlo et al., 2002

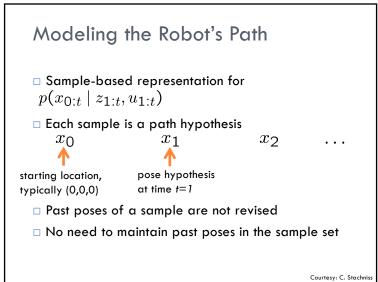
Courtesy: C. Stachniss

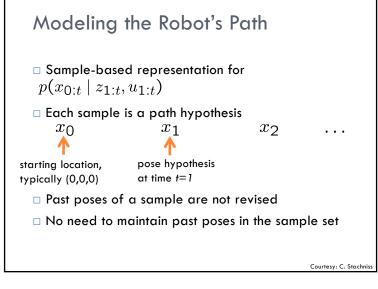
Rao-Blackwellization for SLAM

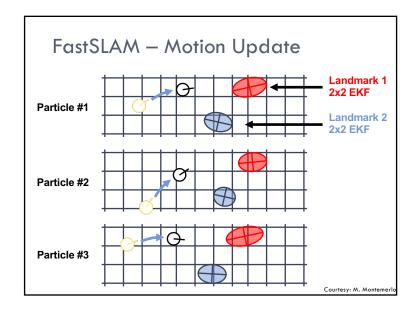
Factorization of the SLAM posterior
$$p(x_{0:t},m_{1:M}\mid z_{1:t},u_{1:t}) = \\ p(x_{0:t}\mid z_{1:t},u_{1:t}) \ p(m_{1:M}\mid x_{0:t},z_{1:t}) \\ \frac{p(x_{0:t}\mid z_{1:t},u_{1:t})}{\int} \prod_{i=1}^{M} p(m_i\mid x_{0:t},z_{1:t}) \\ \text{particle filter similar to MCL}$$

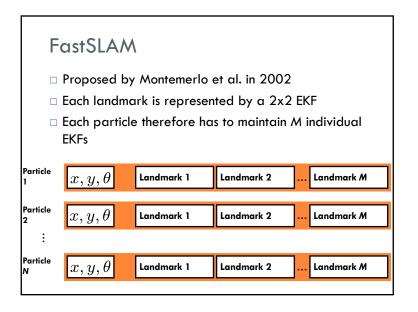
2-dimensional EKFs!

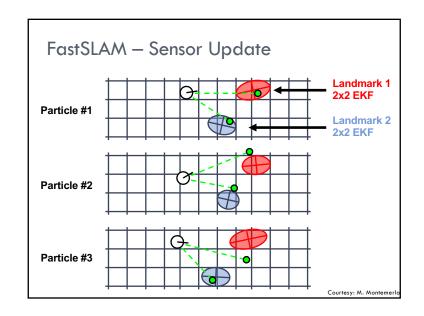
First exploited in FastSLAM by Montemerlo et al., 2002

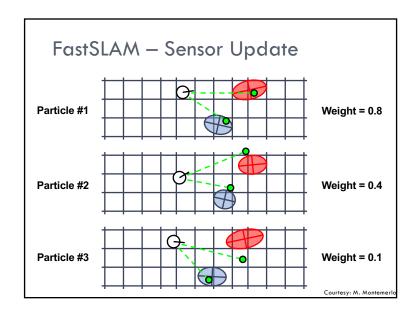


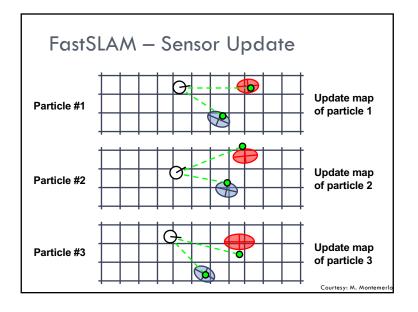












Key Steps of FastSLAM 1.0

□ Extend the path posterior by sampling a new pose for each sample

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

□ Compute particle weight

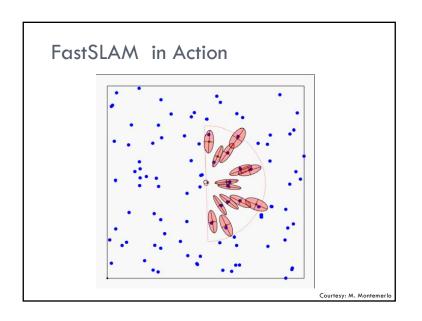
Compute particle weight
$$w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \, \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T Q^{-1} \, (z_t - \hat{z}^{[k]})\right\}$$

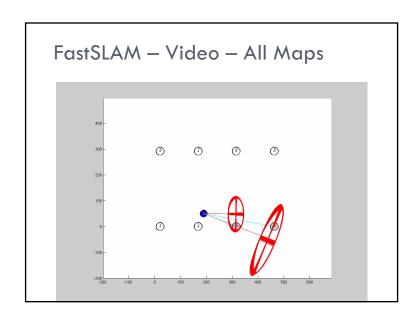
innovation covariance

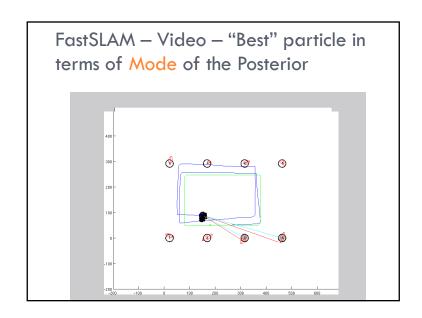
- □ Update belief of observed landmarks (EKF update rule)
- □ Resample

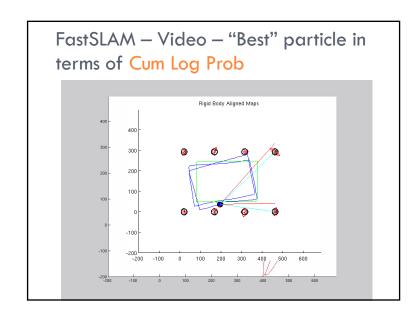
Courtesy: C. Stachniss

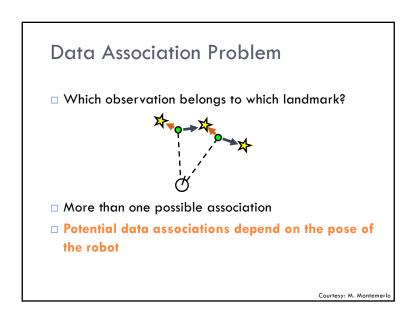
exp. observation

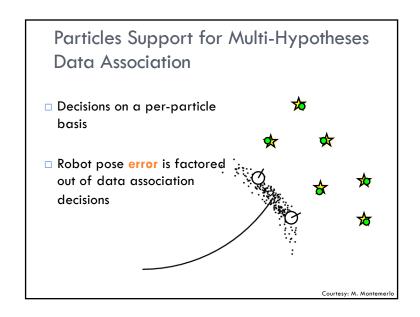


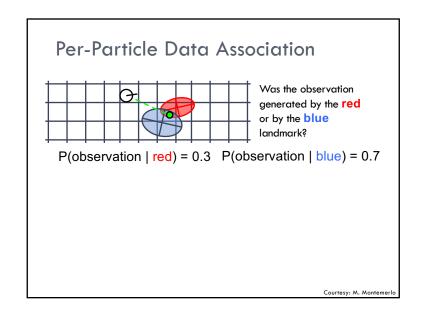


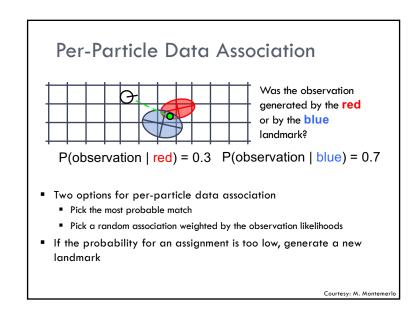


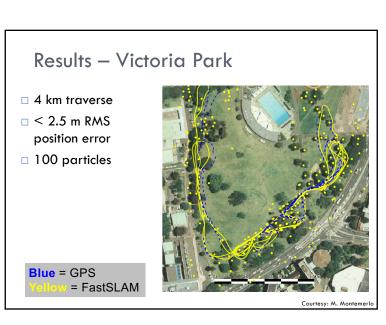


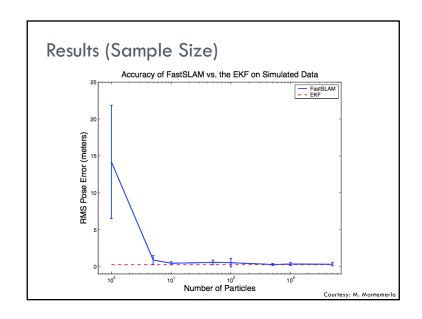


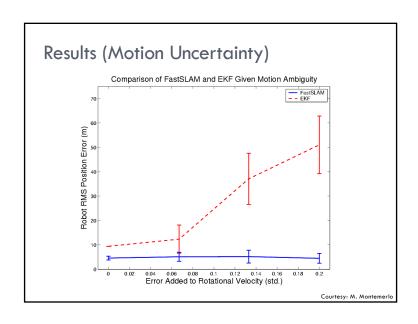










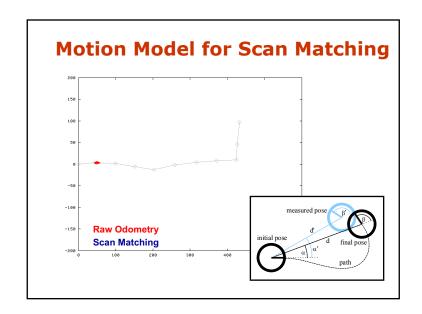


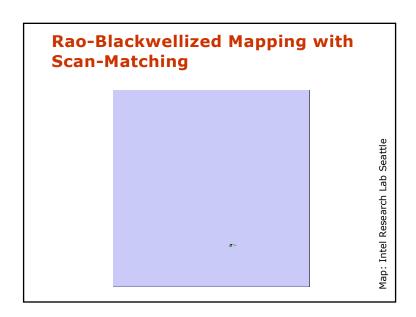
Techniques to Reduce the Number of Particles Needed

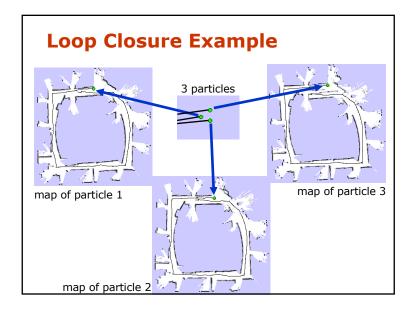
- Better proposals (put the particles in the right place in the prediction step).
- Avoid particle depletion (re-sample only when needed).

Generating better Proposals

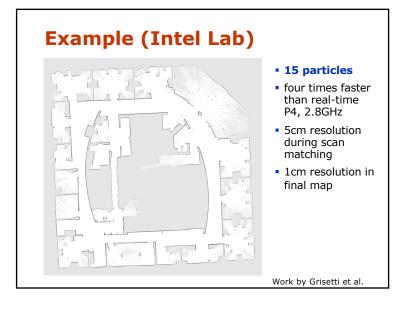
- Use scan-matching to compute highly accurate odometry measurements from consecutive range scans.
- Use the improved odometry in the prediction step to get highly accurate proposal distributions.

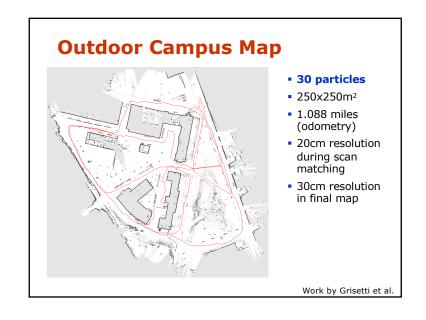












FastSLAM 1.0

☐ FastSLAM 1.0 uses the motion model as the proposal distribution

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

☐ Is there a better distribution to sample from?

[Montemerlo et al., 2002]

Courtesy: C. Stachnis

FastSLAM 1.0 to FastSLAM 2.0

□ FastSLAM 1.0 uses the motion model as the proposal distribution

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

- □ FastSLAM 2.0 considers also the measurements during sampling
- Especially useful if an accurate sensor is used (compared to the motion noise)

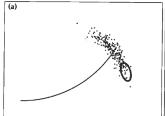
[Montemerlo et al., 2003]

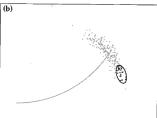
Courtesy: C. Stachnis

Weakness of FastSLAM 1.0

□ Proposal Distribution

□ Importance weighting





FastSLAM 2.0 (Informally)

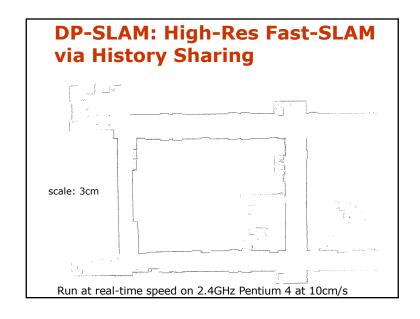
□ FastSLAM 2.0 samples from

$$x_t^{[k]} \sim p(x_t \mid x_{1:t-1}^{[k]}, u_{1:t}, z_{1:t})$$

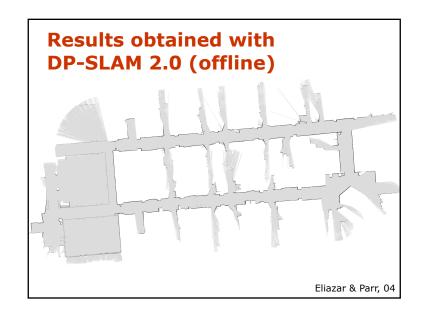
- □ Results in a more peaked proposal distribution
- □ Less particles are required
- □ More robust and accurate
- □ But more complex...

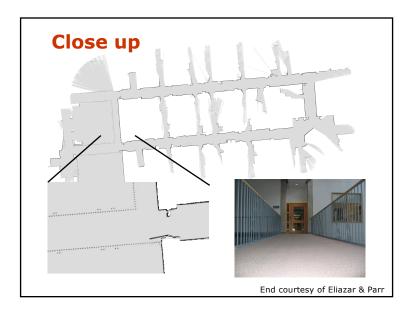
[Montemerlo et al., 2003]

FastSLAM Problems How to determine the sample size? Particle deprivation, especially when closing (multiple) loops Particles share common history here FastSLAM 1.0 FastSLAM 2.0.









FastSLAM Summary

- □ Particle filter-based SLAM
- Rao-Blackwellization: model the robot's path by sampling and compute the landmarks given the poses
- □ Allow for per-particle data association
- □ FastSLAM 1.0 and 2.0 differ in the proposal distribution
- \square Complexity $\mathcal{O}(N\log M)$

Courtesy: C. Stachniss

Literature

FastSLAM

- □ Thrun et al.: "Probabilistic Robotics", Chapter 13.1-13.3 + 13.8 (see errata!)
- Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, 2002
- Montemerlo and Thrun: Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM, 2003