

Single Robot Exploration

- Frontiers between free space and unknown areas are potential target locations
- Going to frontiers will gain information

Typical Trajectories in an Office Environment

Implicit / no coordination:

Explicit coordination:

Multi-Robot Mapping With Known Start Locations

Multi-Robot Mapping With Known Start Locations

- Map an unknown area
- Search for an "object of value"
- Set up a surveillance network
> Track any intruders

Multi-robot Map Merging

- Problems
- Number of possible merges is exponential in number of robots
- Cannot merge maps by simply overlaying them
- Wanted
- Scalability, robustness
- Merge maps as soon as possible

Multi-robot Map Merging

CSE 571: Robotics

Estimating relative locations

- Idea: Localize one robot in other robot's map using particle filter
- Problems:
- Only partial map available
- Other robot might be outside the map
- Map grows
- Impossible to keep track of all locations inside and outside the partial map
- Solution: Only keep track of trajectories that overlapped map at some time

CSE 571: Robotics

Partial map localization (intuition)

- Overlapping trajectories
$p\left(x_{t} \mid z_{1: t}, u_{1: z-1}\right)=$
$\alpha_{t} p\left(z_{t} \mid x_{t}\right) \cdot\left[\int p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) p\left(x_{t-1} \mid z_{1: t-1}, u_{1: t-2}\right) d x_{t-1}+p\left(x_{t} \mid n_{t-1}, u_{t-1}\right) p\left(n_{t-1} \mid z_{1: t-1}, u_{1: t-2}\right]\right.$
- Non-overlapping trajectories
$p\left(n_{t} \mid z_{1: t}, u_{1: t-1}\right)=\alpha_{t} p\left(z_{t} \mid\right.$ outside $)(1-\varepsilon) p\left(n_{t-1} \mid z_{1: t-1}, u_{1: t-2}\right)$
CSE 571: Robotics

Coordinated exploration with three robots from unknown start locations

The robots are fully autonomous. All computation is performed on-board.

Shown is the perspective of one robot

Control Center and Test Team

CSE 571: Robotics

CentiBots: Experimental Evaluation

- Rigorously tested by outside evaluation team
- No testing allowed in $1 / 2$ of environment
- Limited communication
- No intervention / observation during experiment
- Comparison to "ground truth" map

Three Mapping Runs

View Selection Algorithm

- Conceptually similar to Planetarium Algorithm [Connolly '85]
- Procedure:
- Generate kinematically achievable viewpoints
- Compute information gain (quality) for each viewpoint

- Select view as tradeoff between quality and cost

Re-Grasp Selection

- Generate candidate grasps [Diankov '10]
- Select grasp by maximum information gain, accounting for occlusion caused by grasp

