
11/20/16

1

CSE-571
Sampling-Based	Motion	Planning

Slides	based	on	those	from	Pieter	Abbeel,	Zoe	McCarthy

Many	images	from	Lavalle,	Planning	Algorithms

n Problem
n Given	start	state	xS,	goal	state	xG

n Asked	for:	a	sequence	of	control	inputs	that	leads	from	start	to	goal

n Why	tricky?

n Need	to	avoid	obstacles

n For	systems	with	underactuated dynamics:	can’t	simply	move	along	
any	coordinate	at	will

n E.g.,	car,	helicopter,	airplane,	but	also	robot	manipulator	hitting	joint	limits

Motion	Planning

n Could	try	by,	for	example,	following	formulation:

n Or,	with	constraints,	(which	would	require	using	an	infeasible	method):

n Can	work	surprisingly	well,	but	for	more	complicated	problems	 can	get	stuck	in	infeasible	local	minima

Solve	by	Nonlinear	Optimization	for	Control?

Xt can	encode	obstacles

Examples

Helicopter	path	
planning

Cartpole swing-up Acrobot

Examples Examples



11/20/16

2

Examples

n Configuration	Space

n Probabilistic	Roadmap

n Rapidly-exploring	Random	Trees	(RRTs)

n Extensions

n Smoothing

Motion	Planning:	Outline

=	{	x	|		x	is	a	pose	of	the	robot}

n obstacles	à configuration	space	obstacles

Configuration	Space	(C-Space)

Workspace Configuration	Space

(2	DOF:	translation	only,	no	rotation)

free	space
obstacles

Motion	planning

Probabilistic	Roadmap	(PRM)
Free/feasible	spaceSpace	Rn forbidden	space Configurations	are	sampled	by	picking	coordinates	at	random

Probabilistic	Roadmap	(PRM)



11/20/16

3

Probabilistic	Roadmap	(PRM)
Configurations	are	sampled	by	picking	coordinates	at	random Sampled	configurations	are	tested	for	collision

Probabilistic	Roadmap	(PRM)

The	collision-free	configurations	are	retained	as	milestones

Probabilistic	Roadmap	(PRM)
Each	milestone	is	linked	by	straight	paths	to	its	nearest	neighbors

Probabilistic	Roadmap	(PRM)

Each	milestone	is	linked	by	straight	paths	to	its	nearest	neighbors

Probabilistic	Roadmap	(PRM)
The	collision-free	links	are	retained	as	local	paths to	form	the	PRM

Probabilistic	Roadmap	(PRM)



11/20/16

4

s

g

The	start	and	goal	configurations	are	included	as	milestones

Probabilistic	Roadmap	(PRM)
The	PRM	is	searched	for	a	path	from	s	to	g

s

g

Probabilistic	Roadmap	(PRM)

n Initialize	set	of	points	with	xS and	xG

n Randomly	sample	points	in	configuration	space

n Connect	nearby	points	if	they	can	be	reached	from	each	other

n Find	path	from	xS to	xG in	the	graph

n Alternatively:	keep	track	of	connected	components	incrementally,	and	
declare	success	when	xS and	xG are	in	same	connected	component

Probabilistic	Roadmap PRM	Example	1

PRM	Example	2

n Pro:

n Probabilistically	complete:	i.e.,	with	probability	one,	if	run	for	long	
enough	the	graph	will	contain	a	solution	path	if	one	exists.

n Cons:

n Required	to	solve	2-point	boundary	value	problem

n Build	graph	over	state	space	but	no	focus	on	generating	a	path

PRM’s	Pros	and	Cons



11/20/16

5

Rapidly	exploring	Random	Tree	(RRT)

Steve	LaValle (98)

n Basic	idea:

n Build	up	a	tree	through	generating	“next	states”	in	the	tree	by	
executing	random	controls

n However:	not	exactly	above	to	ensure	good	coverage

How to Sample

Rapidly	exploring	Random	Tree	(RRT)

n Select	random	point,	and	expand	nearest	vertex	towards	it

n Biases	samples	towards	largest	Voronoi region

Rapidly	exploring	Random	Tree	(RRT)

n Select	random	point,	and	expand	nearest	vertex	towards	it

n Biases	samples	towards	largest	Voronoi region

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal 

state with probability 1%, this ensures it attempts to connect to goal semi-regularly

Rapidly	exploring	Random	Tree	(RRT) Rapidly	exploring	Random	Tree	(RRT)

Source:	LaValle and	Kuffner 01



11/20/16

6

n NEAREST_NEIGHBOR(xrand,	T):	need	to	find	(approximate)	
nearest	neighbor	efficiently

n KD	Trees	data	structure	(upto 20-D)		[e.g.,	FLANN]

n Locality	Sensitive	Hashing

n SELECT_INPUT(xrand,	xnear)

n Two	point	boundary	value	problem
n If	too	hard	to	solve,	often	just	select	best	out	of	a	set	of	control	sequences.		
This	set	could	be	random,	or	some	well	chosen	set	of	primitives.

RRT	Practicalities

n No	obstacles,	holonomic:

n With	obstacles,	holonomic:

n Non-holonomic:	approximately	(sometimes	as	approximate	as	picking	best	of	a	
few	random	control	sequences)	solve	two-point	boundary	value	problem

RRT	Extension

Growing	RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

n Volume	swept	out	by	unidirectional	RRT:

xS

Bi-directional	RRT

xG xS xG

n Volume	swept	out	by	bi-directional	RRT:

n Difference	more	and	more	pronounced	as	dimensionality	increases

n Planning	around	obstacles	or	through	narrow	passages	can	
often	be	easier	in	one	direction	than	the	other

Multi-directional	RRT

n Issue:	nearest	points	chosen	for	expansion	are	
(too)	often	the	ones	stuck	behind	an	obstacle

Resolution-Complete	RRT	(RC-RRT)

RC-RRT solution:

n Choose a maximum number of times, m, you are willing to try to expand each node

n For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

n Initialize CVF to zero when node is added to tree

n Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

n Increase CVF of that node by 1

n Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

n When a node is selected for expansion, skip over it with probability CVF/m



11/20/16

7

RRT*

Source:	Karaman and	Frazzoli

n Asymptotically	optimal

n Main	idea:

n Swap	new	point	in	as	parent	for	nearby	vertices	who	can	be	reached	
along	shorter	path	through	new	point	than	through	their	original	
(current)	parent

RRT*

RRT*

Source:	Karaman and	Frazzoli

RRT

RRT*

RRT*

Source:	Karaman and	Frazzoli

RRT RRT*

Real	Time	RRT*
Randomized	motion	planners	tend	to	find	not	so	great	paths	for	
execution:	very	jagged,	often	much	longer	than	necessary.

à In	practice:	do	smoothing	before	using	the	path

n Shortcutting:	

n along	the	found	path,	pick	two	vertices	xt1,	xt2 and	try	to	connect	them	
directly	(skipping	over	all	intermediate	vertices)

n Nonlinear	optimization	for	optimal	control

n Allows	to	specify	an	objective	function	that	includes	smoothness	in	
state,	control,	small	control	inputs,	etc.

Smoothing


