

Solve by Nonlinear Optimization for Control?		
Could try by, for example, following formulation:		
$ \begin{split} \min_{u,x} & (x_T - x_G)^\top (x_T - x_G) \\ \text{s.t.} & x_{t+1} = f(x_t, u_t) \ \forall t \\ & u_t \in \mathcal{U}_t \\ & x_t \in \mathcal{X}_t \\ & x_t \in \mathcal{X}_t \\ & x_0 = x_S \end{split} $ X can encode obstacles		
 Or, with constraints, (which would require using an infeasible method): 		
$ \begin{split} \min_{u,x} & \ u\ \\ \text{s.t.} & x_{t+1} = f(x_t, u_t) \forall t \\ & u_t \in \mathcal{U}_t \\ & x_t \in \mathcal{X}_t \\ & x_0 = x_S \\ & X_T = x_G \end{split} $		
 Curi work surprisingly well, but for more complicated problems can get stuck in injedsible local minima 		

Probabilistic Roadmap

- Initialize set of points with X_S and X_G
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from X_S to X_G in the graph
 - Alternatively: keep track of connected components incrementally, and declare success when X_S and X_G are in same connected component

PRM's Pros and Cons

- Pro:
 - Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.
- Cons:
 - Required to solve 2-point boundary value problem
 - Build graph over state space but no focus on generating a path

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

- Basic idea:
 - Build up a tree through generating "next states" in the tree by executing random controls
 - However: not exactly above to ensure good coverage

Rapidly exploring Random Tree (RRT)

Select random point, and expand nearest vertex towards it
 Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)

Select random point, and expand nearest vertex towards it

RRT Practicalities

- NEAREST_NEIGHBOR(X_{rand}, T): need to find (approximate) nearest neighbor efficiently
 - KD Trees data structure (upto 20-D) [e.g., FLANN]
 - Locality Sensitive Hashing

SELECT_INPUT(x_{rand}, x_{near})

 Two point boundary value problem
 If too hard to solve, often just select best out of a set of control sequences. This set could be random, or some well chosen set of primitives.

$ \begin{array}{c c} \textbf{Algorithm 6: RRT}^{*} \\ \hline \textbf{I} \ V \leftarrow \{x_{inikl}\}; E \leftarrow 0; \\ \textbf{2} \ \text{for } i = 1, \dots, n \ \text{do} \\ \textbf{3} \ \ x_{rand} \leftarrow \texttt{SappleTree}; \\ \textbf{4} \ \ x_{const} \leftarrow \texttt{Nearest}(C = (V, E), x_{rand}); \\ \textbf{5} \ \ x_{const} \leftarrow \texttt{Nearest}(C = (V, E), x_{rand}); \\ \textbf{6} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	RRT*		
17 return $G = (V, E);$	Alig 1 V 2 fc 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 rt	gorithm 6: RRT* (= { π_{min} }); $E \leftarrow 0;$ or = 1,, A0 $\pi_{mad} \leftarrow \text{SampleFree};$ $\pi_{mad} \leftarrow \text{SampleFree};$ $\pi_{mad} \leftarrow \text{SampleFree};$ $\pi_{mad} \leftarrow \text{SampleFree};$ $\pi_{mad} \leftarrow \text{SampleFree};$ $\pi_{mad} \leftarrow \text{NearC}(G = (V, E), \pi_{mad});$ $\pi_{mad} \leftarrow \text{NearC}(G = (V, E), \pi_{mad}) + (\text{Line}(\pi_{max}, \pi_{mad}));$ $\pi_{mad} \leftarrow \pi_{mad}(\pi_{mad}, \pi_{mad}) + (\text{Line}(\pi_{max}, \pi_{mad}));$ $\pi_{mad} \leftarrow \pi_{mad}(\pi_{mad}, \pi_{mad}) + (\text{Line}(\pi_{max}, \pi_{mad}));$ $\pi_{mad} \leftarrow \pi_{mad}(\pi_{mad}, \pi_{mad}) + (\text{Line}(\pi_{max}, \pi_{mad})) < G_{mad}(\pi_{mad}, \pi_{mad})) $ $\pi_{mad} \leftarrow (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\text{Line}(\pi_{max}, \pi_{mad})) < G_{mad}(\pi_{mad}, \pi_{mad}) > (\text{Line}(\pi_{max}, \pi_{mad})) < G_{mad}(\pi_{mad}, \pi_{mad}) > (\text{Line}(\pi_{max}, \pi_{mad})) < G_{mad}(\pi_{mad}, \pi_{mad}) > (\text{Line}(\pi_{max}, \pi_{mad}, \pi_{mad})) > (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{mad}, \pi_{mad}, \pi_{mad}) > (\pi_{$	

Smoothing		
Randomized motion planners tend to find not so great paths for execution: very jagged, often much longer than necessary.		
ightarrow In practice: do smoothing before using the path		
Shortcutting:		
 along the found path, pick two vertices X₁, X₂ and try to connect them directly (skipping over all intermediate vertices) 		
 Nonlinear optimization for optimal control 		
 Allows to specify an objective function that includes smoothness in state, control, small control inputs, etc. 		