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We present the motion planning framework for an autonomous vehicle navigating
through urban environments. Such environments present a number of motion planning
challenges, including ultrareliability, high-speed operation, complex intervehicle inter-
action, parking in large unstructured lots, and constrained maneuvers. Our approach
combines a model-predictive trajectory generation algorithm for computing dynamically
feasible actions with two higher level planners for generating long-range plans in both
on-road and unstructured areas of the environment. In the first part of this article, we
describe the underlying trajectory generator and the on-road planning component of
this system. We then describe the unstructured planning component of this system used
for navigating through parking lots and recovering from anomalous on-road scenarios.
Throughout, we provide examples and results from “Boss,” an autonomous sport utility
vehicle that has driven itself over 3,000 km and competed in, and won, the DARPA Urban
Challenge. C⃝ 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Autonomous passenger vehicles present an incredi-
ble opportunity for the field of robotics and society
at large. Such technology could drastically improve
safety on roads, provide independence to millions
of people unable to drive because of age or ability,
revolutionize the transportation industry, and reduce

the danger associated with military convoy opera-
tions. However, developing robotic systems that are
sophisticated enough and reliable enough to operate
in everyday driving scenarios is tough. As a result, up
until very recently, autonomous vehicle technology
has been limited to either off-road, unstructured en-
vironments where complex interaction with other
vehicles is nonexistent (Carsten, Rankin, Ferguson,
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& Stentz, 2007; Iagremma & Buehler, 2006a, 2006b;
Kelly, 1995; Singh et al., 2000; Stentz & Hebert, 1995)
or very simple on-road maneuvers such as highway-
based lane following (Thorpe, Jochem, & Pomerleau,
1997).

The DARPA Urban Challenge competition was
designed to extend this technology as far as possi-
ble toward the goal of unrestricted on-road driving.
The event consisted of an autonomous vehicle race
through an urban environment containing single-
and multilane roads, traffic circles and intersections,
open areas and unpaved sections, road blockages,
and complex parking tasks. Successful vehicles had
to travel roughly 60 miles, all in the presence of
other human-driven and autonomous vehicles, and
all while abiding by speed limits and California driv-
ing rules.

This challenge required significant advances over
the state of the art in autonomous vehicle technol-
ogy. In this paper, we describe the motion plan-
ning system developed for Carnegie Mellon Univer-
sity’s winning entry in the Urban Challenge, “Boss.”
This system enabled Boss to travel extremely quickly
through the urban environment to complete its mis-
sions; interact safely and intelligently with obstacles
and other vehicles on roads, at intersections, and in
parking lots; and perform sophisticated maneuvers
to solve complex parking tasks.

We first introduce very briefly the software ar-
chitecture used by Boss and the role of motion plan-
ning within that architecture. We then describe the
trajectory generation algorithm used to generate ev-
ery move of the vehicle. In Section 5, we discuss the

motion planning framework used when navigating
on roads.

In Section 6, we discuss the framework used
when navigating through unstructured areas or per-
forming complex maneuvers. We then provide results
and discussion from hundreds of hours and thou-
sands of miles of testing and describe related work
in both on-road and unstructured planning.

2. SYSTEM ARCHITECTURE
Boss’s software system is decomposed into four ma-
jor blocks (see Figure 1) and is described in detail
in (Urmson et al., 2008). The perception component
fuses and processes data from Boss’s sensors to pro-
vide key environmental information, including the
following:

• vehicle state, globally referenced position,
attitude, and speed for Boss;

• road world model, globally referenced geo-
metric information about the roads, parking
zones, and intersections in the world;

• moving obstacle set, an estimation of other
vehicles in the vicinity of Boss;

• static obstacle map, a two-dimensional (2D)
grid representation of free, dangerous, and
lethal space in the world; and

• road blockages, an estimation of clearly im-
passable road sections.

The mission planning component computes the
fastest route through the road network to reach the

Figure 1. Boss: Carnegie Mellon’s winning entry in the Urban Challenge, along with its software system architecture.

Journal of Field Robotics DOI 10.1002/rob



Ferguson, Howard, & Likhachev: Motion Planning in Urban Environments • 941

next checkpoint in the mission, based on knowledge
of road blockages, speed limits, and the nominal time
required to make special maneuvers such as lane
changes or U-turns.

The behavioral executive combines the strate-
gic global information provided by mission planning
with local traffic and obstacle information provided
by perception and generates a sequence of local tasks
for the motion planner. It is responsible for the sys-
tem’s adherence to various rules of the road, espe-
cially those concerning structured interactions with
other traffic and road blockages, and for detection of
and recovery from anomalous situations. The local
tasks it feeds to the motion planner take the form of
discrete motion goals, such as driving along a road
lane to a specific point or maneuvering to a specific
pose or parking spot. The issuance of these goals
is predicated on traffic concerns such as precedence
among vehicles stopped at an intersection. In the case
of driving along a road, desired lane and speed com-
mands are given to the motion planner to implement
behaviors such as distance keeping, passing maneu-
vers, and queuing in stop-and-go traffic.

The motion planning component takes the mo-
tion goal from the behavioral executive and generates
and executes a trajectory that will safely drive Boss
toward this goal, as described in the following sec-
tion. Two broad contexts for motion planning exist:
on-road driving and unstructured driving.

3. MOTION PLANNING
The motion planning layer is responsible for execut-
ing the current motion goal issued from the behav-
ioral executive. This goal may be a location within a
road lane when performing nominal on-road driving,
a location within a parking lot or obstacle field when
traversing through one of these areas, or any loca-
tion in the environment when performing error re-
covery. The motion planner constrains itself based on
the context of the goal and the environment to abide
by the rules of the road.

Figure 2 provides a basic illustration of the na-
ture of the goals provided by the behavioral execu-
tive. During nominal on-road driving, the goal entails
a desired lane and a desired position within that lane
(typically a stop line at the end of the lane). In such
cases, the motion planner invokes a high-speed, on-
road planner to generate a path that tracks the desired
lane. During unstructured driving, such as when nav-
igating through parking lots, the goal consists of a de-

Figure 2. Motion goals provided by the behavioral execu-
tive to the motion planner. Also shown are the frequently
updated speed and desired acceleration commands.

sired pose of the vehicle in the world. In these cases,
the motion planner invokes a four-dimensional (4D)
lattice planner that generates a global path to the de-
sired pose. These unstructured motion goals are also
used when the vehicle encounters an anomalous sit-
uation during on-road driving and needs to perform
a complex maneuver (such as when an intersection is
partially blocked and cannot be traversed in the de-
sired lane).

As well as issuing motion goals, the behavioral
executive is constantly providing desired maximum
speed and acceleration/deceleration commands to
the motion planner. It is through this interface that
the behavioral executive is able to control the vehi-
cle’s forward progress in distance keeping and in-
tersection precedence scenarios. When the vehicle is
not constrained by such scenarios, the motion plan-
ner computes desired speeds and accelerations based
on the constraints of the environment itself (e.g., road
curvature and speed limits).

Given a motion goal, the motion planner creates
a path toward the desired goal and then tracks this
path by generating a set of candidate trajectories that
follow the path to varying degrees and selecting from
this set the best trajectory according to an evalua-
tion function. Each of these candidate trajectories is
computed using a trajectory generation algorithm de-
scribed in the next section. As mentioned above, the
nature of the generated path being followed differs
based on the context of the motion goal and the en-
vironment. In addition, the evaluation function dif-
fers depending on the context but always includes
consideration of static and dynamic obstacles, curbs,
speed, curvature, and deviation from the path. The
selected trajectory is then directly executed by the

Journal of Field Robotics DOI 10.1002/rob



942 • Journal of Field Robotics—2008

vehicle. This process is repeated at 10 Hz by the mo-
tion planner.

4. TRAJECTORY GENERATION
Each candidate trajectory is computed using a model-
predictive trajectory generator from Howard and
Kelly (2007) that produces dynamically feasible ac-
tions between initial and desired vehicle states. In
general, this algorithm can be used to solve the prob-
lem of generating a set of parameterized controls
[u(p, x)] that satisfy a set of state constraints whose
dynamics can be expressed by a set of differential
equations:

x =
[
x y θ κ v . . .

]T
, (1)

ẋ(x, p) = f (x, u(p, x)), (2)

where x is the vehicle state (with position x, y, head-
ing θ , curvature κ , and velocity v, as well as other
state parameters such as commanded velocity) and
p is the set of parameters for which we are solving.
The derivative of vehicle state ẋ is a function of both
the parameterized control input u(p, x) and the vehi-
cle state x because the vehicle’s response to a particu-
lar control input is state dependent. In this section,
we describe the application of this general algo-
rithm to our domain, specifically addressing the state
constraints, vehicle model, control parameterization,
initialization function, and trajectory optimization
approaches used.

4.1. State Constraints
For navigating both on-road and unstructured areas
of urban environments, we generated trajectories that
satisfied both target 2D position (x, y) and heading
(θ ) constraints. We defined the constraint equation
formula [C(x, p)] as the difference between these tar-
get boundary state constraints (denoted xC) and the
integral of the model dynamics (the endpoint of the
computed vehicle trajectory):

xC =
[
xC yC θC

]T
, (3)

xF(p, x) = xI +
∫ tf

0
ẋ(x, p)dt, (4)

C(x, p) = xC − xF(p, x). (5)

The constrained trajectory generation algorithm de-
termines the control parameters p that drive Eq. (5) to

zero. This results in a trajectory from an initial state xI
to a terminal vehicle state xF that is as close as possi-
ble to the desired terminal state xC.

4.2. Vehicle Modeling
The development of a high-fidelity vehicle predictive
motion model is important for the accurate prediction
of vehicle motion and thus for the generation of accu-
rate trajectories using our constraint-based approach.
Our vehicle model consists of a set of parameter-
ized functions that were fitted to data extracted from
human-driven performance runs in the vehicle. The
key parameters in our model are the controller delay,
the curvature limit (the minimum turning radius),
the curvature rate limit (a function of the maximum
speed at which the steering wheel can be turned),
and the maximum acceleration and deceleration of
the vehicle. The controller delay accurately predicts
the difference in time between a command from soft-
ware and the corresponding initial response from
hardware and is an important consideration when
navigating at high speeds. The curvature, rate of cur-
vature, and acceleration and deceleration limits were
essential for accurately predicting the response of the
vehicle over entire trajectories. This model is then
simulated using a fixed-timestep Euler integration to
predict the vehicle’s motion. The Appendix provides
details of the model used for Boss.

4.3. Controls Parameterization
For Ackermann-steered vehicles, it is advantageous
to parameterize the curvature function in terms of
arclength [κ(p, s)]. This is because, for similar trajec-
tories, the solution values for the curvature profile pa-
rameters are less dependent on the speed at which
the trajectory is executed. For Boss, we parameterize
the vehicle controls with a time-based linear veloc-
ity function [v(p, t)] and an arclength-based curva-
ture function [κ(p, s)]:

u(p, x) =
[
v(p, t) κ(p, s)

]T
. (6)

We allow the linear velocity profile to take the form
of a constant profile, linear profile, linear ramp pro-
file, or trapezoidal profile [see Figure 3(a)]. The mo-
tion planner selects the appropriate profile based on
the driving mode and context (e.g., maintaining a
constant velocity for distance keeping or slowing
down for an upcoming intersection). Each of these
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Figure 3. Velocity and curvature profiles. (a) Several different linear velocity profiles were applied in this system, each
with its own parameterization and application. Each parameterization contains some subset of velocity and acceleration
knot points (v0, vt , vf , a0, and af ) and the length of the path, measured in time (t0, tf ). (b) The curvature profile includes
four possible degrees of freedom: the three spline knot points (κ0, κ1, and κ2) and the length of the path (sf ).

profiles consists of a set of dependent parameters
(v0, vt , vf , a0, and af ) and the time to complete the
profile (t0, tf ), all of which become members of the
parameter set p. Because all of the dependent profile
parameters are typically known, no optimization is
done on the shape of each of these profiles.

The curvature profile defines the shape of the tra-
jectory and is the primary profile over which opti-
mization is performed. Our profile consists of three
independent curvature knot point parameters (κ0, κ1,

and κ2) and the trajectory length sf [see Figure 3(b)].
In general, it is important to limit the degrees of
freedom in the system to minimize the presence of
local optima and to improve the runtime perfor-
mance of the algorithm (which is approximately lin-
ear with the number of free parameters in the system)
but maintain enough flexibility to satisfy all of the
boundary state constraints. We chose a second-order
spline profile because it contains four degrees of free-
dom, enough to satisfy the three boundary state con-
straints. We further fix the initial command knot
point κ0 during the optimization process to the curva-
ture at the initial state xI to provide smooth controls.1

With the linear velocity profile’s dependent pa-
rameters being fully defined and the initial spline pa-
rameter of the curvature profile fixed, we are left with
a system with three parameterized freedoms, that is,
the latter two curvature spline knot points and the
trajectory length:

pfree =
[
κ1 κ2 sf

]T
. (7)

1However, this can also be fixed to a different value to produce
sharp trajectories, as described in Section 5.2.

The duality of the trajectory length sf and time tf
can be resolved by estimating the time that it takes
to drive the entire distance through the linear ve-
locity profile. Arclength was used for the indepen-
dent parameter for the curvature profiles because the
shape of these profiles is somewhat independent of
the speed at which they are traveled. This allows so-
lutions with similar parameters for varying linear ve-
locity profiles.

4.4. Initialization Function
Given the three free parameters and the three con-
straints in our system, we can use various optimiza-
tion or root-finding techniques to solve for the param-
eter values that minimize our constraint equation.
However, for efficiency it is beneficial to precompute
offline an approximate mapping from relative state
constraint space to parameter space to seed the con-
straint optimization process. This mapping can dras-
tically speed up the algorithm by placing the initial
guess of the control parameters close to the desired
solution, reducing the number of online optimiza-
tion steps required to reach the solution (within a de-
sired precision). Given the high number of state vari-
ables and the fact that the system dynamics cannot
be integrated in closed form, it is infeasible to pre-
compute the entire mapping of state space to input
space for any nontrivial system, such as the Boss ve-
hicle model. We instead generate an approximation of
this mapping through a five-dimensional (5D) lookup
table with varying relative initial and terminal posi-
tion △x,△y, relative heading △θ , initial curvature κi ,
and constant velocities v. Because this is only an ap-
proximation some optimization is usually required;
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Figure 4. Offline lookup table generation. (a) Some sampled trajectories (in red) and some table endpoints (red arrows)
that we wish to generate trajectories to for storage in the lookup table. (b) The closest sampled trajectories to the desired
table endpoints are selected and then optimized to reach the desired endpoints. The parameter sets corresponding to these
optimized trajectories are then stored in the lookup table. (c) The set of all sampled trajectories (red) and table endpoints
(blue) for a single initial vehicle state. In this case the initial vehicle curvature is not zero, so the set of trajectories is not
symmetric about the vehicle.

however, the initial seed from the lookup table signif-
icantly reduces the number of optimization iterations
required from an arbitrary set of parameters.

Figure 4 provides an illustration of the lookup
table generation process. First, the five dimensions
of interest are discretized into a (5D) table. Next,
uniform sampling is used to sample from the set
of all possible parameter values and the table posi-
tions each of these sample trajectories terminate in
are recorded. The 5D table is then stepped through,
and for each position in the table the sample parame-
ter values that come closest to this position are found.
This parameter set is then optimized (using the opti-
mization technique presented in the next section) to
accurately match the table position, and then the re-
sulting parameter set is stored in the corresponding
index of the 5D table.

4.5. Trajectory Optimization
Given a set of parameters p that provide an approx-
imate solution, it is then necessary to optimize these
parameters to reduce the endpoint error and “snap”
the corresponding trajectory to the desired terminal
state.2 To do this, we linearize and invert our system
of equations to produce a correction factor for the free
control parameters based on the product of the in-
verted Jacobian and the current boundary state error.
The Jacobian can be determined numerically through

2Depending on the desired terminal state accuracy, it is sometimes
possible to use the approximate parameters from the lookup table
without any further optimization.

central differences of simulated vehicle actions:

#p = −
[
δC(x, p)

δp

]−1

C(x, p). (8)

The control parameters are modified until the resid-
ual of the boundary state constraints is within an
acceptable bound or until the optimization process
diverges. In situations in which boundary states are
unachievable due to vehicle limitations, the opti-
mization process predictably diverges as the par-
tial derivatives in the Jacobian approach zero. The
optimization history is then searched for the best can-
didate action (the most aggressive action that gets
closest to the state constraints), and this candidate is
accepted or rejected based on the magnitude of its
error.

Figure 5 illustrates the online trajectory gener-
ation approach in action. Given a desired terminal
state, we first look up from our table the closest termi-
nal and initial states and their associated free param-
eter sets. We then interpolate between these closest
parameter sets in 5D to produce our initial approx-
imation of the parameter set to reach our desired
terminal state. Figure 5(a) shows the lookup and
interpolation steps, with the resulting parameter set
values and corresponding trajectory. Figures 5(c)–5(e)
show the interpolation process for the free param-
eters.3 Next, we evaluate the endpoint error of the

3Note that, for illustration purposes, only a subset of the param-
eter sets used for interpolation is shown in these figures (the full
interpolation is in 5D not 2D), and this is why the interpolated re-
sult does not lie within the convex hull of the four sample points
shown.
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Figure 5. Online trajectory generation. (a) Given an initial state and desired terminal state (relative terminal state shown in
green), we find the closest elements of the lookup table (in red) and interpolate between the control parameters associated
with these elements (interpolation of the free parameters is shown in graphs c–e) to come up with an initial approximation
of the free parameters (resulting corresponding trajectory shown in blue). (b) This approximate trajectory is then optimized
by modifying the free parameters based on the endpoint error, resulting in a sequence of trajectories that get closer to the
desired terminal state. When the endpoint error is within an acceptable bound, the most recent parameter set is returned
(trajectory shown in green). The interpolation over the free parameters κ1, κ2, and sf is shown by the three graphs c–e
(interpolated solutions shown in blue, final optimized solutions shown in green).

resulting trajectory, and we use this error to mod-
ify our parameter values to get closer to our desired
terminal state, using the optimization approach just
described. We repeat this optimization step until our
endpoint error is within an allowed bound of the de-
sired state [see Figure 5(b)], and the resulting param-
eters and trajectory are stored and evaluated by the
motion planner.

5. ON-ROAD PLANNING
5.1. Path Extraction
During on-road navigation, the motion goal from the
behavioral executive is a location within a road lane.
The motion planner then attempts to generate a tra-
jectory that moves the vehicle toward this goal loca-
tion in the desired lane. To do this, it first constructs a
curve along the centerline of the desired lane, repre-
senting the nominal path that the center of the vehicle
should follow. This curve is then transformed into a
path in rear-axle coordinates to be tracked by the mo-
tion planner.

5.2. Trajectory Generation
To robustly follow the desired lane and to avoid static
and dynamic obstacles, the motion planner generates
trajectories to a set of local goals derived from the
centerline path. Each of these trajectories originates
from the predicted state that the vehicle will reach
by the time the trajectories are executed. To calcu-

late this state, forward prediction using an accurate
vehicle model (the same model used in the trajec-
tory generation phase) is performed using the tra-
jectories selected for execution in previous planning
episodes. This forward prediction accounts for both
the high-level delays (the time required to plan) and
the low-level delays (the time required to execute a
command).

The goals are placed at a fixed longitudinal dis-
tance down the centerline path (based on the speed
of the vehicle) but vary in lateral offset from the
path to provide several options for the planner. The
trajectory generation algorithm described above is
used to compute dynamically feasible trajectories
to these local goals. For each goal, two trajectories
are generated: a smooth trajectory and a sharp tra-
jectory. The smooth trajectory has the initial cur-
vature parameter κ0 fixed to the curvature of the
forward-predicted vehicle state. The sharp trajectory
has this parameter set to an offset value from the
forward-predicted vehicle state curvature to produce
a sharp initial action. These sharp trajectories are
useful for providing quick responses to suddenly
appearing obstacles or dangerous actions of other
vehicles.

Figure 6 provides an example of smooth and
sharp trajectories. The left-most image shows two tra-
jectories (cyan and purple) generated to the same goal
pose. The purple (smooth) trajectory exhibits contin-
uous curvature control throughout; the cyan (sharp)
trajectory begins with a discontinuous jump in com-
manded curvature, resulting in a sharp response from
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Figure 6. Smooth and sharp trajectories.

the vehicle. In these images, the initial curvature of
the vehicle is shown by the short pink arc. The four
center images show the individual sharp and smooth
trajectories, along with the convolution of the vehicle
along these trajectories. The right-most image illus-
trates how these trajectories are generated in practice
for following a road lane.

5.3. Trajectory Velocity Profiles
The velocity profile used for each of the generated
trajectories is selected from the set introduced in Sec-
tion 4.3 based on several factors, including the max-
imum speed given from the behavioral executive
based on safe following distance to the lead vehicle,
the speed limit of the current road segment, the maxi-
mum velocity feasible given the curvature of the cen-
terline path, and the desired velocity at the local goal
(e.g., if it is a stop line).

In general, profiles are chosen that maximize the
speed of the vehicle at all times. Thus, typically a lin-
ear ramp profile is used, with a ramp velocity equal to
the maximum speed possible and a linear component
corresponding to the maximum acceleration possible.
If the vehicle is slowly approaching a stop line (or
stopped short of the stop line), a trapezoidal profile is
employed so that the vehicle can both reach the stop
line quickly and come smoothly to a stop.

Multiple velocity profiles are considered for a
particular trajectory when the initial profile results in
a large endpoint error. This can occur when the rate
of curvature required to reach the desired endpoint is
not possible given the velocity imposed by the initial
profile. In such cases, additional profiles with less ag-
gressive speeds and accelerations are generated until
either a valid trajectory is found or a maximum num-

ber have been evaluated (in our case, three per initial
trajectory).

5.4. Trajectory Evaluation
The resulting set of trajectories are then evaluated
against their proximity to static and dynamic obsta-
cles in the environment, as well as their distance from
the centerline path, their smoothness, their endpoint
error, and their speed. The best trajectory according
to these metrics is selected and executed by the ve-
hicle. Because the trajectory generator computes the
feasibility of each trajectory using an accurate vehicle
model, the selected trajectory can be directly executed
by a vehicle controller.

One of the challenges of navigating in urban en-
vironments is avoiding other moving vehicles. To do
this robustly and efficiently, we predict the future be-
havior of these vehicles and collision-check our can-
didate trajectories in state-time space against these
predictions. We do this collision checking efficiently
by using a hierarchical algorithm that performs a se-
ries of intersection tests between bounding regions
for our vehicle and each other vehicle, with each test
successively more accurate (and more computation-
ally expensive). See Ferguson, Darms, Urmson, and
Kolski (2008) for more details on the algorithms used
for prediction and efficient collision checking.

Figure 7 provides an example of the local plan-
ner following a road lane. Figure 7(b) shows the ve-
hicle navigating down a two-lane road (detected ob-
stacles and curbs shown as red and blue pixels, lane
boundaries shown in blue, centerline of lane in red,
current curvature of the vehicle shown in pink, min-
imum turning radius arcs shown in white) with a
vehicle in the oncoming lane (in green). Figure 7(c)
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Figure 7. Following a road lane. These images show a single timeframe from the Urban Challenge.

Figure 8. Performing a lane change reliably and safely. Here, Boss changed lanes because another robot’s chase vehicle
was traveling too slowly in its original lane.

shows a set of trajectories generated by the vehicle
given its current state and the centerline path and
lane boundaries. From this set of trajectories, a sin-
gle trajectory is selected for execution, as discussed
above. Figure 7(d) shows the evaluation of one of
these trajectories against both static and dynamic ob-
stacles in the environment.

5.5. Lane Changing
As well as driving down the current lane, it is often
necessary or desired in urban environments to per-
form lane changes. This may be to pass a slow or
stalled vehicle in the current lane or move into an ad-
jacent lane to prepare for an upcoming turn.

In our system, lane changes are commanded by
the behavioral executive and implemented by the
motion planner in a way similar to normal lane driv-
ing: a set of trajectories is generated along the cen-
terline of the desired lane. However, because it is not
always possible to perform the lane change immedi-
ately, an additional trajectory is generated along the
current lane in case none of the desired lane trajecto-

ries is feasible. Also, to ensure smooth lane changes,
no sharp trajectories are generated in the direction
of the current lane. Figure 8 provides an example
lane change performed during the Urban Challenge
to pass a chase vehicle.

5.6. U-Turns
If the current road segment is blocked, the vehicle
must be able to turn around and find another route
to its destination. In this scenario, Boss uses infor-
mation about the dimensions of the road to gener-
ate a smooth path that turns the vehicle around. De-
pending on how constrained the road is, this path
may consist of a single forward segment (e.g., a tra-
ditional U-turn) or a three-point turn.4 This path is
then tracked in a fashion similar to the lane center-
line paths, using a series of trajectories with varying
offsets. Figure 9 provides an example three-point turn

4If the road is extremely narrow, even a three-point turn may not be
possible. In such cases, a more powerful lattice planner is invoked,
as described in Section 7.2.
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Figure 9. Performing a U-turn when encountering a road blockage. In this case the road was too narrow to perform a
single forward action to turn around and a three-point turn was required. (a) Initial plan generated to reverse the direction
of the vehicle. (b, c) Tracking the plan. (d) Reverting back to lane driving after the vehicle has completely turned around
and is in the correct lane.

performed during one of the qualification events at
the Urban Challenge.

5.7. Defensive Driving
One of the advanced requirements of the Urban Chal-
lenge was the ability to react safely to aberrant behav-
ior of other vehicles. In particular, if another vehicle
was detected traveling the wrong direction in Boss’s
lane, it was the responsibility of Boss to pull off the
road in a defensive driving maneuver to avoid a col-
lision with the vehicle. To implement this behavior,
the behavioral executive closely monitors other vehi-
cles and if one is detected traveling toward Boss in its

Figure 10. Defensive driving on roads. (a) Boss initially
plans down its lane while the oncoming vehicle is far away.
(b) When the oncoming vehicle is detected as dangerous,
Boss generates a set of trajectories off the right side of the
road. (c) After the oncoming vehicle has passed, Boss plans
back onto the road and continues.

lane, the motion planner is instructed to move Boss
off the right side of the road and come to a stop. This
is performed in a fashion similar to a lane change
to a hallucinated lane off the road but with a heav-
ily reduced velocity so that Boss does not leave the
road traveling too quickly and then comes to a stop
once it is completely off the road. After the vehicle
has passed, Boss then plans back onto the road and
continues (see Figure 10).

5.8. Error Detection and Recovery
A central focus of our system-level approach was
the detection of and recovery from anomalous situ-
ations. In lane driving contexts, such situations usu-
ally presented themselves through the motion plan-
ner being unable to generate any feasible trajectories
to track the desired lane (for instance, if the desired
lane is partially blocked and the on-road motion plan-
ner cannot plan a path through the blockage). In such
cases, the behavioral executive issues a motion goal
that invokes the more powerful, yet more computa-
tionally expensive, 4D lattice motion planner. If this
goal is achieved, the system resumes with lane driv-
ing. If the motion planner is unable to reach this goal,
the behavioral executive continues to generate new
goals for the lattice planner until one is satisfied. We
provide more details on how the lattice planner inter-
acts with these goals in the latter part of this article,
and more details on the error detection and recovery
process can be found in Baker, Ferguson, and Dolan
(2008).

6. UNSTRUCTURED PLANNING
During unstructured navigation, the motion goal
from the behavioral executive is a pose (or set of
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poses) in the environment. The motion planner at-
tempts to generate a trajectory that moves the vehicle
toward this goal pose. However, driving in unstruc-
tured environments significantly differs from driving
on roads. As mentioned in Section 5.1, when traveling
on roads the desired lane implicitly provides a pre-
ferred path for the vehicle (the centerline of the lane).
In unstructured environments there are no driving
lanes, and thus the movement of the vehicle is far less
constrained.

To efficiently plan a smooth path to a distant goal
pose, we use a lattice planner that searches over ve-
hicle position x, y, orientation θ , and velocity v. The
set of possible local maneuvers considered for each
(x, y, θ, v) state in the planner’s search space are con-
structed offline using the same vehicle model as used
in trajectory generation, so that they can be accu-
rately executed by the vehicle. This planner searches
in a backward direction out from the goal pose(s) and
generates a path consisting of a sequence of feasible
high-fidelity maneuvers that are collision-free with
respect to the static obstacles observed in the environ-
ment. This path is also biased away from undesirable
areas within the environment such as curbs and loca-
tions in the vicinity of dynamic obstacles.

This global high-fidelity path is then tracked by
a local planner that operates similarly to the on-road
lane tracker, by generating a set of candidate trajec-
tories that follow the path while allowing for some
flexibility in local maneuvering. However, the nature
of the trajectories generated in unstructured environ-

ments is slightly different. In the following sections,
we describe in more detail the elements of our ap-
proach and how it exploits the context of its instantia-
tion to adapt its behavior based on the situation (e.g.,
parking lot driving vs. off-road error recovery).

6.1. Planning Complex Maneuvers
To efficiently generate complex plans over large,
obstacle-laden environments, the planner relies on
an anytime, replanning search algorithm known as
Anytime Dynamic A* (Anytime D*), developed by
Likhachev, Ferguson, Gordon, Stentz, and Thrun
(2005). Anytime D* quickly generates an initial, sub-
optimal plan for the vehicle and then improves the
quality of this solution while deliberation time al-
lows. The algorithm is also able to provide control
over the suboptimality bound of the solution at all
times during planning. Figure 19 later in this paper
shows an initial, suboptimal path converging over
time to the optimal solution.

When new information concerning the envi-
ronment is received (for instance, a new static or
dynamic obstacle is observed), Anytime D* is able to
efficiently repair its existing solution to account for
the new information. This repair process is expedited
by performing the search in a backward direction, as
in such a scenario updated information in the vicinity
of the vehicle affects a smaller portion of the search
space and so Anytime D* is able to reuse a large
portion of its previously constructed search tree in

Figure 11. Replanning when new information is received.
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Figure 12. Dense and coarse resolution action spaces. The coarse action space contains many fewer actions (24 versus 36
in the dense action space) with transitions only to states with a coarse-resolution heading discretization (in our case, 16
headings versus 32 in the dense-resolution discretization). In both cases the discretization in position is 0.25 m and the axes
in both diagrams are in meters.

recomputing a new path. Figure 11 illustrates this re-
planning capability. These images were taken from a
parking task performed during the National Qualifi-
cation Event (the bottom-left image shows the park-
ing lot in green and the neighboring roads in blue).
The top-left image shows the initial path planned for
the vehicle to enter the parking spot indicated by the
white triangle. Several of the other spots were occu-
pied by other vehicles (shown as rectangles of various
colors), with detected obstacles shown as red areas.
The trajectories generated to follow the path are
shown emanating from our vehicle (discussed later).
As the vehicle gets closer to its intended spot, it ob-
serves a little more of the vehicle parked in the right-
most parking spot (top, second-from-left image). At
this point, it realizes its current path is infeasible and
replans a new path that has the vehicle perform a
loop and pull in smoothly. This path was favored
in terms of time over stopping and backing up to
reposition.

To further improve efficiency, the lattice planner
uses a multiresolution state and action space. In the
vicinity of the goal and vehicle, where very complex
maneuvering may be required, a dense set of actions
and a fine-grained discretization of orientation are
used during the search. In other areas, a coarser set
of actions and discretization of orientation are em-
ployed. However, these coarse and dense resolution
areas share the same dimensionality and seamlessly
interface with each other, so that resulting solution
paths overlapping both coarse and dense areas of the

space are smooth and feasible. Figure 12 illustrates
how the dense and coarse action and state spaces
differ.

The effectiveness of the Anytime D* algorithm is
highly dependent on its use of an informed heuristic
to focus its search. An accurate heuristic can reduce
the time and memory required to generate a solution
by orders of magnitude, whereas a poor heuristic can
diminish the benefits of the algorithm. It is thus im-
portant to devote careful consideration to the heuris-
tic used for a given search space.

Because in our setup Anytime D* searches back-
ward, the heuristic value of a state estimates the cost
of a path from the robot pose to that state. Anytime
D* requires these values to be admissible (not to over-
estimate the actual path cost) and consistent (Pearl,
1984). For any state x, y, θ, v, the heuristic we use is
the maximum of two values. The first value is the cost
of an optimal path from the robot pose to x, y, θ, v as-
suming a completely empty environment. These val-
ues are precomputed offline and stored in a heuris-
tic lookup table (Knepper & Kelly, 2006). This is a
very well-informed heuristic function when operat-
ing in sparse environments and is guaranteed to be
admissible. The second value is the cost of a 2D path
from the robot xr, yr coordinates to x, y given the
actual environment. These values are computed on-
line by a 2D grid-based Dijkstra’s search. This sec-
ond heuristic function is very useful when operating
in obstacle-laden environments. By taking the max-
imum of these two heuristic values, we are able to
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Figure 13. Snapshot from a qualification run during the Urban Challenge, showing (b) the obstacle map from perception
(obstacles in white), (c) the constrained cost map based on the road structure (lighter areas are more costly), and (c) the
resulting combined cost map used by the planner.

incorporate both the constraints of the vehicle and
the constraints imposed by the obstacles in the envi-
ronment. The result is a very well-informed heuris-
tic function that can speed up the search by an or-
der of magnitude relative to either of the component
heuristics alone. For more details concerning the ben-
efit of this combined heuristic function and other op-
timizations implemented in our lattice planner, in-
cluding its multiresolution search space and how it
efficiently performs convolutions and replanning, see
Likhachev and Ferguson (2008) and Ferguson and
Likhachev (2008).

6.2. Incorporating Environmental Constraints
In addition to the geometric obstacle information pro-
vided by perception, we incorporate context-specific
constraints on the movement of the vehicle by creat-
ing an additional cost map known as a constrained
map. This 2D grid-based cost map encodes the rela-
tive desirability of different areas of the environment
based on the road structure in the vicinity and, if
available, prior terrain information. This constrained
cost map is then combined with the static map from
perception to create the final combined cost map to be
used by the lattice planner. Specifically, for each cell
(i, j ) in the combined cost map C, the value of C(i, j ) is
computed as the maximum of EPC(i, j ) and CO(i, j ),
where EPC(i, j ) is the static map value at (i, j ) and
CO(i, j ) is the constrained cost map value at (i, j ).

For instance, when invoking the lattice planner
to plan a maneuver around a parked car or jammed
intersection, the constrained cost map is used to spec-
ify that staying within the desired road lane is prefer-
able to traveling in an oncoming lane and similarly
that driving off-road to navigate through a cluttered

intersection is dangerous. To do this, undesirable ar-
eas of the environment based on the road structure
are assigned high costs in the constrained cost map.
These can be both soft constraints (undesirable but
allowed areas), which correspond to high costs, and
hard constraints (forbidden areas), which correspond
to infinite costs. Figure 13 shows the constrained cost
map generated for an on-road maneuver, along with
the expanded perception cost map and the resulting
combined cost map used by the planner.

6.3. Incorporating Dynamic Obstacles
The combined cost map of the planner is also used
to represent dynamic obstacles in the environment
so that they can be avoided by the planner. The per-
ception system of Boss represents static and dynamic
obstacles independently, which allows the motion
planner to treat each type of obstacle differently. The
lattice planner adapts the dynamic obstacle avoid-
ance behavior of the vehicle based on its current
proximity to each dynamic obstacle. If the vehicle
is close to a particular dynamic obstacle, that ob-
stacle and a short-term prediction of its future tra-
jectory is encoded into the combined cost map as a
hard constraint so that it is strictly avoided. For every
dynamic obstacle, both near and far, the planner
encodes a varying high-cost region around the ob-
stacle to provide a safe clearance. Although these
high-cost regions are not hard constraints, they result
in the vehicle avoiding the vicinity of the dynamic
obstacles if at all possible. Further, the generality of
this approach allows us to influence the behavior of
our vehicle based on the specific behavior of the dy-
namic obstacles. For instance, we offset the high-cost
region based on the relative position of the dynamic
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Figure 14. Biasing the cost map for the lattice planner so that the vehicle keeps away from dynamic obstacles. Notice that
the high-cost region around the dynamic obstacle is offset to the left so that Boss will prefer moving to the right of the
vehicle.

obstacle and our vehicle so that we will favor moving
to the right, resulting in yielding behavior in unstruc-
tured environments quite similar to how humans re-
act in these scenarios. Figure 14 provides an example
scenario involving a dynamic obstacle along with the
corresponding cost map generated.

7. TRACKING COMPLEX PATHS
The resulting lattice plan is then tracked in a man-
ner similar to the paths extracted from road lanes: the
motion planner generates a set of trajectories that at-
tempt to follow the plan while also allowing for local
maneuverability. However, in contrast to when fol-
lowing lane paths, the trajectories generated to follow
the lattice path all attempt to terminate on the path.
Each trajectory is in fact a concatenation of two short
trajectories, with the first of the two short trajectories
ending at an offset position from the path and the sec-
ond ending back on the path. By having all concate-
nated trajectories return to the path, we significantly
reduce the risk of having the vehicle move itself into
a state that is difficult to leave.

As mentioned earlier, the motion planner gener-
ates trajectories at a fixed 10 Hz during operation. The
lattice planner also nominally runs at 10 Hz. How-

ever, in very difficult planning scenarios the lattice
planner may take longer (up to a couple of seconds)
to generate its initial solution, and it is for this reason
that preplanning is performed whenever possible (as
will be discussed later). The motion planner contin-
ues to track the current lattice path until it is updated
by the lattice planner.

Figure 15 provides an example of the local plan-
ner following a lattice plan to a specified parking
spot. Figure 15(a) shows the lattice plan generated for
the vehicle (in red) toward the desired parking spot
(desired pose of the vehicle shown as the white tri-
angle). Figure 15(b) shows the set of trajectories gen-
erated by the vehicle to track this plan, and Figure
15(c) shows the best trajectory selected by the vehicle
to follow the path.

Both forward and reverse trajectories are gener-
ated as appropriate based on the velocity of the lat-
tice path being tracked. When the path contains an
upcoming velocity switching point, or cusp point, the
local planner generates trajectories that bring the ve-
hicle to a stop at the cusp point. Figure 16 shows re-
verse trajectories generated to a cusp point in the lat-
tice path.

As mentioned above, one of the desired capa-
bilities of our vehicle was to be able to exhibit
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Figure 15. Following a lattice plan to a parking spot. Here, one lattice planner is updating the path to the spot while
another is simultaneously preplanning a path out of the spot. The goals are represented by the white (current goal) and
gray (next goal) triangles.

human-like yielding behavior in parking lots, to al-
low for safe, natural interaction with other vehicles.
Through our biased cost function, the lattice planner
typically generates paths through parking lots that
keep to the right of other vehicles. However, it is pos-
sible that another vehicle may be quickly heading di-
rectly toward Boss, requiring evasive action similar to
the on-road defensive driving maneuvers discussed
in Section 5.7. In such a case, Boss’s local planner de-
tects that it is unable to continue along its current
course without colliding with the other vehicle, and
it then generates a set of trajectories that are offset to
the right of the path. The intended behavior here is
for each vehicle to move to the right to avoid a colli-
sion. Figure 17 provides an example of this behavior
in a large parking lot.

In addition to the general optimizations always
employed by the lattice planner, several context-
specific reasoning steps are performed in different ur-
ban driving scenarios for which the lattice planner is

invoked. In the following two sections we describe
different methods used to provide optimized, intel-
ligent behavior in parking lots and on-road error re-
covery scenarios.

7.1. Planning in Parking Lots
Because the location of parking lots is known a priori,
this information can be exploited by the motion plan-
ning system to improve the efficiency and behavior
of the lattice planner within these areas. First, we can
use the extents of the parking lot to constrain the ve-
hicle through the constrained cost map. To do this,
we use the a priori specified extents of the parking
lot to set all cells outside the lot (and not part of en-
try or exit lanes) in the constrained cost map to be
hard constraints. This constrains the vehicle to oper-
ate only inside the lot. We also include a high-cost
buffer around the perimeter of the parking lot to bias
the vehicle away from the boundaries of the lot.

Figure 16. Reversing during path tracking. The goal is represented by the green star inside the white parking spot.
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Figure 17. Defensive driving when in unstructured environments. (a) Trajectories thrown to right of path (other vehicle
should likewise go to right). (b) New path planned from new position.

When prior terrain information such as overhead
imagery exists, this information can also be incorpo-
rated into the constrained cost map to help provide
global guidance for the vehicle. For instance, this in-
formation can be used to detect features such as curbs
or trees in parking lots that should be avoided, so that
these features can be used in planning before they
are detected by onboard perception. Figures 18(a)
and 18(b) shows overhead imagery of a parking lot
area used to encode curb islands into a constrained
cost map for the parking lot, and Figure 18(c) shows
the corresponding constrained cost map. This con-
strained cost map is then stored offline and loaded
by the planner online when it begins planning paths
through the parking lot. By storing the constrained
cost maps for parking lots offline, we significantly

reduce online processing as generating the con-
strained cost maps for large, complex parking lots can
take several seconds.

Further, because the parking lot goals are also
known in advance of entering the parking lot (e.g.,
the vehicle knows which parking spot it is intending
on reaching), the lattice planner can preplan to the
first goal pose within the parking lot while the ve-
hicle is still approaching the lot. By planning a path
from the entry point of the parking lot in advance, the
vehicle can seamlessly transition into the lot without
needing to stop, even for very large and complex lots.

Figure 19 illustrates the preplanning used by the
lattice planner. The left-most image shows our ve-
hicle approaching a parking lot (boundary shown
in green), with its intended parking spot indicated

Figure 18. Generating constrained cost maps offline for Castle Commerce Center, California. (a) Overhead imagery show-
ing testing area with road network overlaid. (b) Parking lot area (boundary in blue) with overhead imagery showing curb
islands. (c) Resulting constrained cost map incorporating boundaries, entry and exit lanes, and curb islands (the lighter the
color, the higher the cost).
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Figure 19. Preplanning a path into a parking spot and improving this path in an anytime fashion. A set of goal poses are
generated that satisfy the parking spot, and an initial path is planned while the vehicle is still outside the parking lot. This
path is improved as the vehicle approaches, converging to the optimal solution shown in the right-hand image.

by the white triangle (and multicolored set of goal
poses). While the vehicle is still outside the lot, it be-
gins planning a path from one of the entries to the
desired spot, and the path converges to the optimal
solution well before the vehicle enters the lot.

In a similar vein, when the vehicle is in a lot trav-
eling toward a parking spot, we use a second lattice
planner to simultaneously plan a path from that spot
to the next desired location (e.g., the next parking
spot to reach or an exit of the lot). When the vehi-
cle reaches its intended parking spot, it then immedi-
ately follows the path from this second planner, again
eliminating any time spent waiting for a plan to be
generated.

Figure 15 provides an example of the use of mul-
tiple concurrent lattice planners. Figure 15(a) shows
the lattice plan generated toward the desired parking
spot. Figure 15(d) shows the path simultaneously be-
ing planned out of this spot to the exit of the parking

lot, and Figure 15(e) shows the paths from both plan-
ners at the same time.

7.2. Planning in Error Recovery Scenarios
The lattice planner is flexible enough to be used in
a large variety of cases that can occur during on-
road and unstructured navigation. In particular, it
is used during error recovery when navigating con-
gested lanes or intersections and to perform difficult
U-turns. In such cases, the nominal on-road motion
planner determines that it is unable to generate any
feasible trajectory and reports its failure to the behav-
ioral executive, which in turn issues an unstructured
goal pose (or set of poses) to the motion planner and
indicates that it is in an error recovery mode. The mo-
tion planner then uses the lattice planner to generate
a path to the set of goals, with the lattice planner de-
termining during its planning which goal is easiest

Figure 20. Error recovery examples. (a) Planning around a stalled vehicle in the road (obstacles in white, set of pose goals
given to planner shown as various colored rectangles, and resulting path shown in red). Corresponds to scenario from
Figure 13. (b) Planning through a partially blocked intersection. (c) Performing a complex U-turn in a cluttered area. (Boss’s
three-dimensional model has been removed to see the lattice plan underneath the vehicle.)
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to reach. In these error recovery scenarios the lattice
planner is biased to avoid areas that could result in
unsafe behavior (such as oncoming lanes when on
roads) through increasing the cost of undesirable ar-
eas in the constrained cost map (see Figure 13).

The ability to cope with anomalous situations
was a key focus of Boss’s software system, and the lat-
tice planner was used as a powerful tool to maneuver
the vehicle to arbitrary locations in the environment.
Figure 20 provides several error recovery examples
involving the lattice planner.

The lattice planner is also invoked when the road
cannot be detected with certainty due to the absence
of markers (e.g., an unpaved road with berms). In this
case, the lattice planner is used to bias the movement
of the vehicle to stay within any detected geometric
extents of the road.

8. RESULTS AND DISCUSSION
Our motion planning system was developed over the
course of more than a year and tested over thousands
of kilometers of autonomous operation in three dif-
ferent extensive testing sites, as well as the Urban
Challenge event itself. Through this extensive testing,
all components were hardened and the planners were
incrementally improved upon.

A key factor in our system-level design was that
Boss should never give up. As such, the lattice plan-
ner was designed to be general enough and powerful
enough to plan in extremely difficult scenarios. In ad-
dition, the behavioral executive was designed to is-
sue an infinite sequence of pose goals to the motion
planner should it continue to fail to generate plans
(see Baker et al., 2008, for details of this error recovery
framework). And in the final Urban Challenge event,
as anticipated, this error recovery played a large part
in Boss’s successful completion of the course. Over
the course of the three final event missions, there
were 17 different instances in which the lattice plan-
ner was invoked due to an encountered anomalous
situation. (Some of these were getting cut off at in-
tersections, coming across other vehicles blocking the
lane, and perception occasionally observing heavy
dust clouds as static obstacles.)

Incorporation of an accurate vehicle model was
also an important design choice for Boss’s motion
planning system. This allowed Boss to push the limits
of acceleration and speed and travel as fast as possi-
ble along the road network, confident in its execution.
Combining this model with an efficient on-road plan-

ner that could safely handle the high speeds involved
was also central to Boss’s on-road performance.

In addition, the efficiency and path quality of the
lattice planner enabled Boss to also travel smoothly
and quickly through parking lot areas, without ever
needing to pause to generate a plan. As well as gen-
erating smooth paths in (x, y, θ), by also consider-
ing the velocity dimension v, the lattice planner was
able to explicitly reason about the time required to
change direction of travel and was thus able to gen-
erate very fast paths even when complex maneuvers
were required. Overall, the focus on execution speed
and smoothness strongly contributed to Boss finish-
ing the 4-h race 19 min and 8 s faster than its nearest
competitor (DARPA, 2008).

One of the important lessons learned during the
development of this system was that it is often ex-
tremely beneficial to exploit prior, offline processing
to provide efficient online planning performance. We
used this idea in several places, from the genera-
tion of lookup tables for the trajectory generator and
lattice planner heuristic function to the precomput-
ing of constrained cost maps for parking lots. This
prior processing saved us considerably at run time.
Further, even when faced with calculations that can-
not be precomputed offline, such as planning paths
through novel environments, it can often pay to begin
planning before a plan is required. This concept was
the basis for our preplanning on approach to park-
ing lots and our concurrent planning to both current
and future goals, and it enabled us to produce high-
quality solutions without needing to wait for these
solutions to be generated.

Finally, although simplicity was central to our
high-level system development and significant effort
was put into making the interfacing between pro-
cesses as lightweight as possible, we found that in
regard to motion planning, although simple, approx-
imate planning algorithms can work well in most
cases; generality and completeness when needed
are priceless. Using a high-fidelity, high-dimensional
lattice planner for unstructured planning problems
proved time and time again to be the right choice for
our system.

9. PRIOR WORK
Existing research on motion planning for au-
tonomous outdoor vehicles can be roughly
broken into two classes: motion planning for
autonomous vehicles following roads and motion
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planning for autonomous vehicles navigating un-
structured environments including off-road areas
and parking lots. A key difference between road fol-
lowing and navigating unstructured environments
is that in the former case a global plan is already
encoded by the road (lane) itself, and therefore the
planner needs to generate only short-term motion
trajectories that follow the road, whereas in the latter
case no such global plan is provided.

9.1. On-Road Planning
A vast amount of research has been conducted in the
area of road following. Some of the best known and
fully operational systems include the CMU NavLab
project (Thorpe, Hebert, Kanade, & Shafer, 1988),
the INRIA autonomous car project (Baber, Kolodko,
Noel, Parent, & Vlacic, 2005) in France, the VaMoRs
(Dickmanns et al., 1993) and VITA projects (Ulmer,
1992) in Germany, and the Personal Vehicle System
(PVS) project (Hattori, Hosaka, Taniguchi, & Nakano,
1992) in Japan. Approaches to road following in these
and other systems vary drastically. For example, one
of the road following algorithms used by NavLab ve-
hicles is ALVINN (Pomerleau, 1991), which learns the
mapping from road images onto control commands
using a neural network by observing how the car
is driven manually for several minutes. In the VITA
project, on the other hand, the planner was used to
track the lane while regulating the velocity of the ve-
hicle in response to the curvature of the road and the
distance to nearby vehicles and obstacles. Stanford
University’s entry in the second DARPA Grand Chal-
lenge also exhibited lane following behavior through
evaluating a set of candidate trajectories that tracked
the desired path (Thrun et al., 2006). Our lane plan-
ning approach is closely related to theirs; however, to
generate their candidate trajectories they sample the
control space around a base trajectory (e.g., the trajec-
tory leading down the center of the lane), whereas we
sample the state-space along the road lane. Some sig-
nificant advantages of using a state-space approach
include the ability to finely control position and head-
ing at the terminal state of each trajectory (which we
can align with the road shape), the ability to impose
the requirement that each trajectory terminates at ex-
actly the same distance along the path, allowing for
fairer evaluation of candidate actions, and the sim-
plification of generating complex maneuvers such as
U-turns and lane changes.

However, several of these existing approaches
have been shown to be very effective in road follow-
ing in normal conditions. A major strength of our
approach, on the other hand, is that it can handle
difficult scenarios, such as when a road is partially
blocked (e.g., by an obstacle, a stalled car, a slow-
moving car, or a car driving in an opposite direc-
tion but moving out of the bounds of its own lane).
Our system can handle these scenarios robustly and
at high speeds.

9.2. Unstructured Planning
Roboticists have concentrated on the problem of
mobile robot navigation in unstructured environ-
ments for several decades. Early approaches concen-
trated on performing local planning, in which very
short-term reasoning is performed to generate the
next action for the vehicle (Fox, Burgard, & Thrun,
1997; Khatib, 1986; Simmons, 1996). A major limita-
tion of these purely local approaches was their ca-
pacity to get the vehicle stuck in local minima en
route to the goal (for instance, cul-de-sacs). To im-
prove upon this limitation, algorithms were devel-
oped that incorporated global as well as local infor-
mation (Brock & Khatib, 1999; Kelly, 1995; Philippsen
& Siegwart, 2003; Thrun et al., 1998). Subsequent ap-
proaches have focused on improving the local plan-
ning component of these approaches by using more
sophisticated local action sets that better follow the
global value function (Howard & Kelly, 2007; Thrun
et al., 2006) and by generating sequences of actions
to perform more complex local maneuvers (Braid,
Broggi, & Schmiedel, 2006; Stachniss & Burgard, 2002;
Urmson et al., 2006). In parallel, researchers have con-
centrated on improving the quality of global plan-
ning, so that a global path can be easily tracked by the
vehicle (Knepper & Kelly, 2006; LaValle & Kuffner,
2001; Likhachev, Gordon, & Thrun, 2003; Likhachev
et al., 2005; Pivtoraiko & Kelly, 2005; Song & Amato,
2001). However, the computational expense of
generating complex global plans over large distances
has remained very challenging, and the approaches
to date have been restricted to small distances, fairly
simple environments, or highly suboptimal solutions.
Our lattice-based global planner is able to efficiently
generate feasible global paths over much larger dis-
tances than previously possible, while providing sub-
optimality bounds on the quality of the solutions and
anytime improvement of the solutions generated.
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10. CONCLUSIONS
We have presented the motion planning frame-
work for an autonomous vehicle navigating through
urban environments. Our approach combines a high-
fidelity trajectory generation algorithm for comput-
ing dynamically feasible actions with an efficient
lane-based planner, for on-road planning, and a 4D
lattice planner, for unstructured planning. It has been
implemented on an autonomous vehicle that has
traveled more than 3,000 autonomous kilometers,
and we have presented sample illustrations and re-
sults from the Urban Challenge, which it won in
November 2007.

11. APPENDIX: VEHICLE MODEL
Boss’s vehicle model predicts the resulting vehicle
state xt+#t after applying a parameterized set of con-
trols u(p,x) to an initial vehicle state xt . It does this
by forward-simulating the movement of the vehi-
cle given the commanded controls. However, it also
constrains these controls based on the physical con-
straints of the vehicle and safety bounds. Algorithms
1–3 provide pseudocode of this process (the main ve-
hicle model function is MotionModel in Algorithm 3).
Values for the parameters used in each function are
defined in Table A1.

Table A1. Parameters used in vehicle model.

Description Parameter Race day values

Maximum curvature [κ]max 0.1900 rad
Minimum curvature [κ]min −0.1900 rad
Maximum rate of curvature [ dκ

dt ]max 0.1021 rad/s
Minimum rate of curvature [ dκ

dt ]min −0.1021 rad/s
Maximum acceleration [ dv

dt ]max 2.000 m/s
Maximum deceleration [ dv

dt ]min −6.000 m/s
Control latency tdelay 0.0800 s
Speed control logic ascl 0.1681

“a” coefficient
Speed control logic bscl −0.0049

“b” coefficient
Speed control logic |v|scl 4.000 m/s

threshold
Max curvature for speed [κv]max 0.1485 rad
Speed control logic safetyfactor 1.000

safety factor

Algorithm 1 SpeedControlLogic (xt+#t )

Input: xt+#t

Output: xt+#t

1 |v|cmd ← | [vt+#t ]cmd |; //calculate speed

2 [|v|cmd ]max ← max
[
|v|scl ,

[
κt+#t−a

b

]]
; //compute safe

speed
3 [κ]max,scl ← min

[
[κ]max , a + b |v|cmd

]
; //compute
safe curvature

4 if
[
|κt+#t | ≥ [κ]max,scl

]
then

5 |v|cmd ← |saf etyf actor · [|v|cmd ]max |; //check for
safe speed

6 [vt+#t ]cmd ← |v|cmd
[vt ]cmd

|[vt ]cmd |; //update velocity
command

7 return xt+#t;

Algorithm 2 ResponseToControlInputs (xt ,xt+#t , #t)

Input: xt ,xt+#t , #t

Output: xt+#t

1
[

dκ
dt

]

cmd
← [κt+#t ]cmd−κt

dt ; //compute curvature rate

command
2

[
dκ
dt

]

cmd
← min

[
dκ
dt ,

[
dκ
dt

]

max

]
; //upper bound

curvature rate
3

[
dκ
dt

]

cmd
← max

[
dκ
dt ,

[
dκ
dt

]

min

]
; //lower bound

curvature rate
4 xt+#t ← SpeedControlLogic [xt+#t ]; //speed

control logic

5 κt+#t ← κt +
[

dκ
dt

]

cmd
#t; //compute curvature at

time t + #t

6 κt+#t ← min [κt+#t , κmax ]; //upper bound
curvature

7 κt+#t ← max [κt+#t , κmin]; //lower bound
curvature

8
[

dv
dt

]

cmd
← [vt+#t ]cmd−vt

dt ; //compute acceleration

command
9

[
dv
dt

]

cmd
← min

[[
dv
dt

]

cmd
,
[

dv
dt

]

max

]
; //upper bound

acceleration
10

[
dv
dt

]

cmd
← max

[[
dv
dt

]

cmd
,
[

dv
dt

]

min

]
; //lower bound

acceleration
11 vt+#t ← vt +

[
dv
dt

]

cmd
#t; //compute velocity at

time t + #t

12 return xt+#t;

Algorithm 3 MotionModel (xt , u (p,x), #t)

Input: xt , u(p,x), #t

Output: xt+#t

1 xt+#t ← xt + vt cos [θt ] #t ; //compute change in 2D
x-position

2 yt+#t ← yy + vt sin [θt ] #t; //compute change in 2D
y-position

3 θt+#t ← θt + vtκt#t; //compute change in 2D
orientation

4 [κt+#t ]cmd ← u
[
p, s

]
; //get curvature command
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5 [vt+#t ]cmd ← u
[
p, t − tdelay

]
; //get velocity

command
6 [at+#t ]cmd ← u

[
p, t − tdelay

]
; //get acceleration

command
7 xt+#t ← ResponseToControlInputs(xt,xt+#t, #t);

//estimate
response
8 return xt+#t;
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