~LWF0003

Pole Balancing: A Neural Network Approach

Sihant | Stop |

Daniel Mess
Cornell University
May 17,1999

http : / /www.people. cornell. edu/pages/ dah2 3/pole/pole. html
0-
Abstract

A neura network is useful for generating a solution to problems without having to build underlying principles into the solution beforehand. Here,
the pole -balancing problem is studied: a pole beginsin anearly upright position, standing on one end. At each time step, a neura network, which
takes as inputs the position, velocity, angular position and angular velocity, must generate a move that keeps the pole upright. It was found that a
network which judges error based on deviation from vertical can keep the pole pennanently upright relatively quickly.

Background

Simple computing elements -The units of anetwork

A neural network is called that because it is based on amodel of the brain. In the brain, neurons have two states, an excited, or flring state, and a
resting state. Dendrites act as inputs, receiving signals from other neurons, while the axon acts a transmitter, sending out an excitation signal. If
enough excitation signals are received from the dendrite, the entire neuron goes into an excited state, and the an electric pulse travels along the
axon, where it will meet other dendrites.

Each node in a neural network is similar to the neuron described above (see figure 1). Each unit has several input connections Aj and uses an

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0003.htm (1 of 4) [12/6/2001 8:27:15 PM]

~LWF0003

internal function 9 (called the activation function) to send an output signal Ai to other nodes. The activation function 9 takes as input the sum of the
products of the input signals and the weights connecting those signals to the input node: in =L Aj * Wji. The activation function gives the output
value Ai asafunction of the input. Typically, the activation function is g(x) = sigmoid(x)

1

= -Thisfunction generates azero or aone when x ispositively or negatively large and gives al+ex
smooth transition between those two values. Continuing the biological analogy, aone correspondsto aflring of apulse down the axon and
azero correspondsto no firing.

Input
Function
A.. ctlvatlon
Function Figure 1- A singlenode in aneural network

Input Connections

Aj

Output
Function

Output Connections

The most crucial feature of the neural network is the input weights. These weights, which can be either positive or negative, determine how the
input affects the output. Similarly, the brain's behavior is determined by the strength of connections between neurons. It is through adjusting these
weights that learning takes place.

Neural Networks and Learning by Example

Network Structure

A network is constructed by linking nodes together in various ways. There are a number of waysto build a neural network, which fall into two
basic categories: feed- forward and recurrent networks. Feed - forward networks have a start and end and have no cycles. Recurrent networks have
outputs that become inputs to the same network. Although recurrent networks are probably closer to biology, they are more complex and are not
used here.

-2

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0003.htm (2 of 4) [12/6/2001 8:27:15 PM]

~LWF0003

Inputs
Hidden Layer

Output(s)

D~O, D40..

Figure 2- A simpletwo layer, feed forward network

Among feed-forward networks, a simple multilayer network (Figure 2), with inputs, hidden units, and outputs, is commonly used. Like in this
example, the model used in these experiments is comprised of two layers. Inputs are angular position and velocity and outputs are signals
indicating motion right and left.

Content of Examples

A feed-forward network ‘learns’ by repetition of examples. Each example consists of afully defined set of input values and output values
corresponding to those inputs. The neural network isinitialized with a set of generally arbitrary weights and the network is run on each example to
create a set of output values. An error for each example is the difference between generated and actual outputs. Based on the error at the output,
values of various weights are either increased or decreased.

If there are afinite number of examples (and there usually are) it is possible to over-specify the sample set. When thisis the case, the network
performs poorly on an independent set of examples. In order to reduce the likelihood of over-specification, the number of internal nodes must be
limited (depending on the number of examples).

Adjustment of the Weights and Backpropagation

Given an error Errj inthe output nodes, the weight between output node i and nodej is adjusted with each example according to the
following rule;

w

=W,
+ax Err; xg'(in;)

Here, g' isthe derivative of the sigmoid function described earlier, and alphais a constant corresponding to the rate of learning. A larger alpha
produces faster convergence to a solution, but tends to be less stable. A smaller alpharesultsin slower convergence of the weights but greater

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0003.htm (3 of 4) [12/6/2001 8:27:15 PM]

~LWF0003

stability.

Backpropagation is away ofusing the error at the output nodes to adjust weights at edges which are not directly connected to the outputs, but are
separated by one or more layers. Backprogation is discussed in greater detail on pp. 579- 581 of Artificial Intelligence. A Modem ADDroach
(Russdll, et. al.). Essentially, backpropagation generates an error value for layers feeding into the outputs, based on weights. Then, these error
values are propagated backward another layer and so on.

Reinforcement L earning -An Alter native to Backpropagation

The method of learning described above will be briefly contrasted to reinforcement learning. Whereas learning by example uses error to adjust
weights, reinforcement learning uses positive reinforcement by giving a positive value to some goal state. States that are reachable from the goal
state are also given a positive value of lesser magnitude, based on likelihood of reaching the goal state. This positive reinforcement is contrasted
with the negative reinforcement used in these experiments.

3-

Pole Balancing Description

The constraints on the problem areis follows

A cylindrical pole, of negligible thickness is approximately (but not exactly) upright. It balances on a pivot located at its base that can be moved
from side to side. The base either moves discrete amount right or left or stays stationary in each time step. The goal of the neural network isto
determine which of these three moves should be performed at each time step to keep the pole upright.

For the sake of simplicity, the pole's motion is entirely planar. The case of motion in three dimensionsis not very different from motion in two,
because both horizontal directions are essentially equivalent.

Some versions of this problem have the additional constraint that the horizontal position of the pole must remain with a given set of bounds, but
that is not alimitation here.

-4

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0003.htm (4 of 4) [12/6/2001 8:27:15 PM]

~LWF0002

Introduction

Physical Model

To kezp the model sample, position s speaified by just four parameiers

o = |'||,15-.:|Ii1:||1 aF e e

& linear velocity of the base ooy
o anghe ol 1be pole

o angular veloeity of the poie

X

e 3 Pole configuration

Ewch mme stepoos broken doswas anio e soalier sub-steps, Dunng each tme step o of swo things cun

bt

(ay The network spectfies oo moton, I this case, jost the force of grvity influences veloeities st each
Limne step o velocitaes sne uzed w compute new postios foe esch of the en sub-aleps

ih) The network specifies motion. I this cuse, the bage, which 15 at rest initilly, accelesines wniformly fog
five sub-steps i be direction specified and then deceterates uniformly during the remaining five sub-
sleps The forees from pole movement and gravity are added 1ogether in cach siep.

The pele i= inttialized v a randony angle near verical and released with no horizontal or angelor velocity,

The model keeps going until the pole is out of the range of —pi /2 1o pi'2. Then the pole 15 ne-intelized a0

anether random angle,

Reasun for [Nscrereness

Clearly allowing continuons movements would allow a sitzasion where the pole i placed ina perfectly

upright positien by very tiny and precise mevements. We do not want 1o allow this. Further, the way o
biuiren would dooieis theoagh discrcte movements.

Network Model

Input Parameters
Ancular Position and gngulur velocily

Crput Parnmeiers
Tl outpus of two nodes Cosove sight, mesve Lelt) are wsed o generte a move (Lell nzhl statonars

Methods
Equations of motion for the pole

Equations for Gravity

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0002.htm (1 of 6) [12/6/2001 8:22:37 PM]

~LWF0002

Gravity is computed based on afixed base

Moment of inertiaabout end of rigidrod | = (1/3) mL 2

T=mgsiner=1awhereaisangular acceleration

Substituting r = h/ 2, we have

a=(39sine)/(2h)

Equations for End Force

End force is computed by considering the pole as a free mass.

By geometry, it is clear that

a=Ax coselr where Ax islinear acceleration of the base

Again substituting for r, we get

a=2 Ax coseh

At each time step, these two effects are added to get the total change in angular motion of the pole:

~t + dt) = ~t) + a(t) x dt

and e(t + dt) = e(t) + ro(t) x dt

Horizontal motion is simply governed by

1/(1+d1) = v (1) + Ax(1) x d1 and s(1+d1) = (1) + v (1) x d1

Pendlties

Two methods were used to assign error values in each example. The ability of the network to learn in each case was noted.

(a) Assign an error of zero at the output nodes if the pole remained upright. Assign an error of one at the output nodes if the pole fell during the last
time step.

(b) Assign an error at every time step as the angle of the pole after the movement. This means that unless the pole is exactly vertical, some learning
will take place. It also means that the network can become better at balancing the pole even when the pole does not fall.

6-

Convergence

In each test a convergence of the neural network was considered to have occurred when the network completed 500 consecutive steps without a
fall. The number 500 is more or less arbitrary, but it is large enough for our purposes.

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0002.htm (2 of 6) [12/6/2001 8:22:37 PM]

~LWF0002

Variation of Different Parameters

Height of Pole

The height of the pole was varied between 0.2 meters and 15 meters, and the number of steps before convergence was noted.

Learning Ratea

Learning rate alphawas varied between 0.1 and 30, and the number of steps before convergence was noted.

Tweaking the physical model

In order to make the task achievable but somewhat challenging for the network, several parameters were adjusted. These parameters were;

Height olpole; 1 meter
Sze oltime step; 1/10 ofa second (each sub-time step is 0.01 second) Average velocity during pole end movement; 0.5 meters/ second

Softwar e/ Har dwar e Specifications

The experiment was designed as an applet in Java using Microsoft Visual studio. In has been tested on several different PC -compatible systemsin
both Internet Explorer and Netscape. Screen sizes of 15 and 17 inches displayed well, and processors running at 166 MHz and better showed the
simulation at a good rate. Slower processors might not handle the applet as well.

-7-

Results

Convergence to asolution

Shown in figure 4 isaplot of the duration that the pole remains upright as a function of the number of examples that the network has seen. Asthe
figure shows, performance is rather erratic, but generally improving, especialy at the beginning.

~ 160
~140-
c120~
(1) 1000.

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0002.htm (3 of 6) [12/6/2001 8:22:37 PM]

~LWF0002

S80(/)
'060 Q) 40
.0

E 20 ~

z0

1000
2000
3000
4000
5000

Number of Steps Connpleted
Figure 4- Number of steps until collapse as afunction of number of steps completed (examples)
Observation of Learning Rates

Infigure 5, learning time is shown as afunction of learning rate alpha. Large apha consistently improves learning rate. Figure 6 shows learning
time as afunction of height of the pole. An optimum height is around 4 meters, with limits on what can be balanced at both the upper and lower
ends.

cn0.0)-cn-01..0;>.0E: =12
100000
10000

1000

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0002.htm (4 of 6) [12/6/2001 8:22:37 PM]

~LWF0002

100

10

0.1

10

alpha

-8-

100

Figure 5- Number of stepsto conver gence asafunction of learning rate alpha Same, with different pole lengths

120000 ~ 1 00000 00 80000 -
~ 60000
~ 40000 ~ 20000
0

10

15

20

Heig ht

Figure 6 -Number of stepsto convergence asafunction of length of pole

-9

Conclusions

The goal with this sort of problem isto achieve a neural network that behaves well without any pre- programmed physical knowledge of the

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0002.htm (5 of 6) [12/6/2001 8:22:37 PM]

~LWF0002

system. Indeed this was achieved.

In this case, the correlation between alpha and success at learning was purely positive. Perhaps a more complicated network would have given a
different result.

The relationship between pole length and learning rate was an interesting one. An optimum length was about four meters. Longer poles took much
longer for the network to learn, largely because alot of base movement is necessary for asmall change in angle. Very short poles could not be
balanced at all, probably because movements were too coarse.

When maodeling applying errors using the two methods described above, a major observation was made. Method (&), whereby error is non-zero
only when the pole fals, isinsufficient for the network to achieve balance after any finite amount of time. Thisis because the pole may fall at some
time step asaresult of an earlier error. The most recent move may have been correct, but an earlier move may have been incorrect. Unless a
method is built in which propagates error backward through time steps, the network will continue to make bad moves that do not result in afall in
the very next time step. Method (b), where error is proportional to angle, avoided this problem and proved much more successful.

10-
Further experiments
Working with less information

One way that has been suggested to make the pole -balancing problem more challenging (Jervis, et. al.) is to reduce amount of information
available to the network. For example, instead of allowing the network to know precise values of angle and angular velocity, why not connect the
network to the outputs of avideo camera, so that the network must derive the necessary information from visual cues. This would be a much more
interesting problem because there is no simple transformation between the appearance of apole in agiven position and the move that would be
required.

Propagate backward through several time steps

The present model had to be adjusted so that error did not correspond to falls but to angle at every time step. But a memory of recent moves was
kept, then the network could adjust according to those examples with the knowledge that the poleis going to fall in several steps. It would be much
more elegant to correct to network only after afall anyway.

References

Sutton, R. S. and Barto, A.G. Reinforcement L earning: An Introduction. MIT Press, Cambridge, MA, 1998

Also available online at:
http : ! lenry. cs. umass. edu! -rich! booklthe-book. htm.

Russdll, S. J. and Norvig, P .Artificial Intelligence: A Modem Al 1l 1rQach. Prentice Hall, Upper Saddle River, NJ, 1995.

Thomton, S. T .and Marion, J.B. Classic Dvnarnics of Particles and Systems. Har court Brace, New Y ork, 1995.

Jervis, T.T. and Fallside, F. "Pole Balancing on Real Rig Using a Reinforcement Learning Controller. Cambridge University Engineering Dept.,
Dec. 16, 1992.

12

file:///C|/DOCUME~1/selman/LOCALS~1/Temp/~LWF0002.htm (6 of 6) [12/6/2001 8:22:37 PM]

	Local Disk
	~LWF0003

	hess2.pdf
	Local Disk
	~LWF0002

