

Logistics

- Reading for Monday

Ch 6 (Game playing)

- Guest Speaker

Henry Kautz

- Mini Projects
A. Game Playing
- Choose your own game
- Experiment with heursitics
B. Compare two SAT solvers
- DPLL vs WalkSAT
- Experiment with heuristics, constraint propagation, ...

Symbolic Integration

-E.g. $\int x^{2} e^{x} d x=$
-

$$
e^{x}\left(x^{2}-2 x+2\right)+C
$$

Operators:

Integration by parts
Integration by substitution
-

$\sqrt{ }$ Problem spaces $\sqrt{ }$ Blind $\sqrt{ }$ Depth-first, breadth-first, iterative-deepening, iterative broadening \checkmark Informed $\sqrt{ }$ Best-first, Dijkstra's, A^{*}, IDA*, SMA*\| DFB\&B, Beam, Local search hill climb, limited discrep, RTDP Heuristics Evaluation, construction via relaxation Pattern databases Constraint satisfaction Adversary search	

Symbolic Integration

-E.g. $\int x^{2} e^{x} d x=$

$$
e^{x}\left(x^{2}-2 x+2\right)+C
$$

Operators:

Integration by parts
Integration by substitution
-
...

Depth-First Branch \& Bound

- Single DF search
\rightarrow uses linear space
- Keep track of best solution so far
- If $f(n)=g(n)+h(n) \geq \operatorname{cost}($ best-soln $)$

Then prune n

- Requires

Finite search tree, or
Good upper bound on solution cos \dagger

- Generates duplicate nodes in cyclic graphs

Beam Search

- Idea

Best first but only keep N best items on priority queue

- Evaluation

Complete?
Time Complexity?
Space Complexity?

Simulated Annealing

- Objective: avoid local minima

Technique:
For the most part use hill climbing
When no improvement possible

- Choose random neighbor
- Let Δ be the decrease in quality
- Move to neighbor with probability $e^{-\Delta-/ T}$

Reduce "temperature" (T) over time
Pros \& cons Optimal?
If T decreased slowly enough, will reach optimal state Widely used See alsoWalkSAT

Limited Discrepancy Search

- Discrepancy bound indicates how often to violate heuristic
- Iteratively increase...

Assume that heuristic says go left

Admissable Heuristics

- $f(x)=g(x)+h(x)$
- g : cost so far
- h : underestimate of remaining costs

Where do heuristics come from?

Simplifying Integrals

vertex = formula
goal = closed form formula without integrals arcs = mathematical transformations

$$
\int x^{n} d x \rightarrow \frac{x^{n+1}}{n+1}
$$

heuristic $=$ number of integrals still in formula what is being relaxed?

V Problem spaces Search
V Blind
V Depth-first, breadth-first, iterative-deepening,
Viterative broadening
V Informed
Best-first, Dijkstra's, A*, IDA*, SMA*, DFB\&B,
V Beam, hill climb, limited discrep, RTDP
V Local search
Heuristics
\quad Evaluation, construction via relaxation
Pattern databases
Constraint satisfaction
Adversary search

Relaxed Problems

- Derive admissible heuristic from exact cost of a solution to a relaxed version of problem For transportation planning, relax requirement that car has to stay on road \rightarrow Euclidean dist
- Cost of optimal soln to relaxed problem \leq cost of optimal soln for real problem

Heuristics for eight puzzle

\[

\]

What can we relax?

Need More Power!	
Performance of Manhattan Distance Heuristic	
8 Puzzle	< 1 second
15 Puzzle	1 minute
24 Puzzle	65000 years
Need even better heuristics!	

Pattern Databases

[Culberson \& Schaeffer 1996]

- Pick any subset of tiles
\cdot E.g., $3,7,11,12,13,14,15$
- Precompute a table

Optimal cost of solving just these tiles
For all possible configurations

- 57 Million in this case

Use breadth first search back from goal state

- State = position of just these tiles (\& blank)

Importance of Heuristics

- h1 = number of tiles in wrong place
- h2 $=\Sigma$ distances of tiles from correct loc

D	IDS	A*(h1)	A*(h2)
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	364404	227	73
14	3473941	539	113
18		3056	363
24		39135	1641

Subgoal Interactions

- Manhattan distance assumes

Each tile can be moved independently of others

- Underestimates because Doesn't consider interactions between tiles

Using a Pattern Database

- As each state is generated

Use position of chosen tiles as index into DB Use lookup value as heuristic, $h(n)$

Admissible?

Combining Multiple Databases

Can choose another set of tiles
Precompute multiple tables
How combine table values?
E.g. Optimal solutions to Rubik's cube First found w/ IDA* using pattern DB heuristics Multiple DBs were used (dif subsets of cubies)
Most problems solved optimally in 1 day
Compare with 574,000 years for IDDFS
Adapted from Richard Korf presentation $\quad 25$

Drawbacks of Standard Pattern DBs

- Since we can only take max

Diminishing returns on additional DBs

- Would like to be able to add values

Adapted from Richard Korf presentation

Disjoint Pattern DBs

- Partition tiles into disjoint sets

For each set, precompute table

- E.g. 8 tile DB has 519 million entries - And 7 tile DB has 58 million

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

During search
Look up heuristic values for each set
Can add values without overestimating!
Manhattan distance is a special case of this idea where each set is a single tile

Adapted from Richard Korf presentation $\quad 27$

Outline

```
    \ Problem spaces
    \ Search
        \checkmarkBlind
        V Informed
        \checkmark Local
        V Heuristics & Pattern DBs for
            Constraint satisfaction
                    Definition
                    - Factoring state spaces
                    Backtracking policies
                    Variable-ordering heuristics
                    Preprocessing algorithms
        Adversary search
```


Performance

- 15 Puzzle: 2000x speedup vs Manhattan dist IDA* with the two DBs shown previously solves 15 Puzzles optimally in 30 milliseconds
- 24 Puzzle: 12 million \times speedup vs Manhattan IDA* can solve random instances in 2 days. Requires 4 DBs as shown
- Each DB has 128 million entries Without PDBs: 65000 years

Constraint Satisfaction

- Kind of search in which

States are factored into sets of variables
Search = assigning values to these variables
Structure of space is encoded with constraints

- Backtracking-style algorithms work
E.g. DFS for SAT (i.e. DPLL)
- But other techniques add speed

Propagation
Variable ordering
Preprocessing

Chinese Food as Search?
 States?

- Partially specified meals

Operators?

- Add, remove, change dishes

Start state?

- Null meal

Goal states?

- Meal meeting certain conditions (rating?)

Binary Constraint Network

Set of n variables: $x_{1} \ldots x_{n}$
Value domains for each variable: D1 ... Dn
Set of binary constraints (also "relations")
$R_{i j} \subseteq D_{i} \times D_{j}$
Specifies which value pairs ($\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$) are consistent

-V for each country

- V for each country
- Each domain $=4$ colors
- $R_{i j}$ enforces \neq

Factoring States

- Rather than state = meal
- Model state's (independent) parts, e.g.

Suppose every meal for n people
Has n dishes plus soup
Soup $=$
Meal $1=$
Meal $2=$
Meal $n=$

- Or... physical state $=$
X coordinate $=$
y coordinate $=$

CSPs in the Real World

- Scheduling space shuttle repair
- Airport gate assignments
- Transportation Planning
- Supply-chain management
- Computer configuration
- Diagnosis
- UI optimization
- Etc..

Binary Constraint Network

Partial assignment of values = tuple of pairs
$\{\ldots(x, a) . .$.$\} means variable x$ gets value $a . .$.
Tuple=consistent if all constraints satisfied Tuple=full solution if consistent + has all vars

Tuple $\left\{\left(x_{i}, a_{i}\right) \ldots\left(x_{j}, a_{j}\right)\right\}=$ consistent $w /$ a set of vars $\left\{x_{m} \ldots x_{n}\right\}$
iff \exists am ... an such that
$\left.\left\{\left(x_{i}, a_{i}\right) . . .\left(x_{j}, a_{j}\right),\left(x_{m}, a_{m}\right) \ldots\left(x_{n}, a_{n}\right)\right\}\right\}=$ consistent

Classroom Scheduling

- Variables?
- Domains (possible values for variables)?
- Constraints?

N Queens

As a CSP?

CSP as a search problem?

-What are states?
(nodes in graph)
-What are the operators?
(arcs between nodes)

- Initial state?
- Goal test?

N Queens

- Variables = board columns
- Domain values = rows
- $R_{i j}=\left\{\left(a_{i}, a_{j}\right):\left(a i \neq a_{j}\right) \wedge\left(|i-j| \neq\left|a_{i}-a_{j}\right|\right)\right.$
e.g. $R_{12}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\}$

- $\left\{\left(x_{1}, 2\right),\left(x_{2}, 4\right),\left(x_{3}, 1\right)\right\}$ consistent with (x_{4}) - Shorthand: "\{2, 4, 1\} consistent with x_{4} "

Backjumping (BJ)

Similar to BT, but
more efficient when no consistent instantiation can be found for the current var
Instead of backtracking to most recent var... BJ reverts to deepest var which was c-checked against the current var

BJ Discovers
(2, 5, 3, 6) inconsistent with x_{6}

No sense trying other values of x_{5}

Conflict-Directed Backjumping (CBJ)

- More sophisticated backjumping behavior - Each variable has conflict set CS

Set of vars that failed c-checks w/ current val Update this set on every failed c-check

- When no more values to try for x_{i} Backtrack to deepest var, x_{d}, in $\operatorname{CS}\left(x_{i}\right)$ And update $\operatorname{CS}\left(x_{d}\right):=\operatorname{CS}\left(x_{d}\right) \cup C S\left(x_{i}\right)-\left\{x_{d}\right\}$

Forward Checking (FC)

- Perform Consistency Check Forward
- Whenever a var is assigned a value Prune inconsistent values from As-yet unvisited variables
Backtrack if domain of any var ever collapses

FC only visits consistent nodes but not all such nodes
skips $(2,5,3,4)$ which CBJ visits
But FC can't detect that
$(2,5,3)$ inconsistent with $\left\{x_{5}, x_{6}\right\}$

