
1

Heuristics
&

Constraint Satisfaction

CSE 573
University of Washington

© Daniel S. Weld 2

Logistics
• Reading for Monday

 Ch 6 (Game playing)
• Guest Speaker

 Henry Kautz
• Mini Projects

 A. Game Playing
• Choose your own game
• Experiment with heursitics

 B. Compare two SAT solvers
• DPLL vs WalkSAT
• Experiment with heuristics, constraint propagation, …

© Daniel S. Weld 3

573 Topics

Agency
Problem Spaces

Search

Knowledge
Representation

Reinforcement
Learning

Inference Planning
Supervised
Learning

Logic-Based Probabilistic

Multi-agent NLP SoftboticsRobotics

© Daniel S. Weld 4

Symbolic Integration

•E.g. x2ex dx =
• ex(x2-2x+2) + C

∫

Operators:
Integration by parts

Integration by substitution

…

© Daniel S. Weld 5

Problem spaces
Blind

Depth-first, breadth-first, iterative-deepening,
iterative broadening

Informed
Best-first, Dijkstra's, A*, IDA*, SMA*,
DFB&B, Beam,

Local search
hill climb, limited discrep, RTDP

Heuristics
Evaluation, construction via relaxation

Pattern databases
Constraint satisfaction
Adversary search

Search
√
√

√

√
√

√

© Daniel S. Weld 6

Symbolic Integration

•E.g. x2ex dx =
• ex(x2-2x+2) + C

∫

Operators:
Integration by parts

Integration by substitution

…

2

© Daniel S. Weld 7

Depth-First Branch & Bound
• Single DF search

 uses linear space
• Keep track of best solution so far
• If f(n) = g(n)+h(n) ≥ cost(best-soln)

 Then prune n

• Requires
 Finite search tree, or
 Good upper bound on solution cost

• Generates duplicate nodes in cyclic graphs
Adapted from Richard Korf presentation

© Daniel S. Weld 8

No

O(b^d)

O(b + N)

Beam Search
• Idea

 Best first but only keep N best items
on priority queue

• Evaluation
 Complete?

 Time Complexity?

 Space Complexity?

© Daniel S. Weld 9

Hill Climbing
• Idea

 Always choose best child; no
backtracking

 Beam search with |queue| = 1
• Problems?

 Local maxima

 Plateaus

 Diagonal ridges

“Gradient ascent”

© Daniel S. Weld 10

Randomizing Hill Climbing
• Randomly disobeying heuristic
• Random restarts

(heavy tailed distributions)

© Daniel S. Weld 11

Simulated Annealing
• Objective: avoid local minima
• Technique:

 For the most part use hill climbing
 When no improvement possible

• Choose random neighbor
• Let ∆ be the decrease in quality
• Move to neighbor with probability e -∆-/T

 Reduce “temperature” (T) over time
• Pros & cons

 Optimal?

temp

 If T decreased slowly enough, will reach optimal state
• Widely used

 See alsoWalkSAT

© Daniel S. Weld 12

Limited Discrepancy Search
• Discrepancy bound indicates how

often to violate heuristic
• Iteratively increase...

a

b

c

d

e

f

g

h

Assume that heuristic says go left

3

© Daniel S. Weld 13

174611094281174629844710

Genetic Algorithms
• Start with random population

 Representation serialized
 States are ranked with “fitness function”

• Produce new generation
 Select random pair(s):

• probability ~ fitness
 Randomly choose “crossover point”

• Offspring mix halves
 Randomly mutate bits

776511094281 776529844710

164611094281

776029844210

Crossover Mutation

© Daniel S. Weld 14

SearchProblem spaces
Blind

Depth-first, breadth-first, iterative-deepening,
iterative broadening

Informed
Best-first, Dijkstra's, A*, IDA*, SMA*, DFB&B,
Beam, hill climb, limited discrep, RTDP

Local search
Heuristics

Evaluation, construction via relaxation
Pattern databases
Constraint satisfaction
Adversary search

√
√

√

√

√
√

√

√

© Daniel S. Weld 15

Admissable Heuristics
• f(x) = g(x) + h(x)
• g: cost so far
• h: underestimate of remaining costs

Where do heuristics come from?

© Daniel S. Weld 16

Relaxed Problems
• Derive admissible heuristic from exact cost

of a solution to a relaxed version of problem
 For transportation planning, relax requirement

that car has to stay on road Euclidean dist
 For blocks world, distance = # move operations

heuristic = number of misplaced blocks
 What is relaxed problem?

out of place = 2, true distance to goal = 3
• Cost of optimal soln to relaxed problem ≤

cost of optimal soln for real problem

© Daniel S. Weld 17

Simplifying Integrals

vertex = formula
goal = closed form formula without integrals
arcs = mathematical transformations

heuristic = number of integrals still in formula

what is being relaxed?

1

1

n
n xx dx

n

+

→
+∫

© Daniel S. Weld 18

Traveling Salesman Problem
• Problem Space

• Heuristic?

States = partial path (not nec. connected)
Operator = add an edge
Start state = empty path
Goal = complete path

What can be
Relaxed?

4

© Daniel S. Weld 19

Heuristics for eight puzzle
7 2 3

8 3
5 1 6

1 2 3

7 8
4 5 6

start goal

• What can we relax?

© Daniel S. Weld 20

Importance of Heuristics

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

• h1 = number of tiles in wrong place
• h2 = Σ distances of tiles from correct loc

7 2 3

8 5
4 1 6

© Daniel S. Weld 21

Need More Power!
Performance of Manhattan Distance Heuristic

 8 Puzzle < 1 second
 15 Puzzle 1 minute
 24 Puzzle 65000 years

Need even better heuristics!

Adapted from Richard Korf presentation © Daniel S. Weld 22

Subgoal Interactions
• Manhattan distance assumes

 Each tile can be moved independently of others
• Underestimates because

 Doesn’t consider interactions between tiles

Adapted from Richard Korf presentation

1 2 3

7 8
4 6 5

© Daniel S. Weld 23

Pattern Databases
• Pick any subset of tiles

• E.g., 3, 7, 11, 12, 13, 14, 15
• Precompute a table

 Optimal cost of solving just these tiles
 For all possible configurations

• 57 Million in this case
 Use breadth first search back from goal state

• State = position of just these tiles (& blank)

Adapted from Richard Korf presentation

[Culberson & Schaeffer 1996]

© Daniel S. Weld 24

Using a Pattern Database
• As each state is generated

 Use position of chosen tiles as index into DB
 Use lookup value as heuristic, h(n)

 Admissible?

Adapted from Richard Korf presentation

5

© Daniel S. Weld 25

Combining Multiple Databases
• Can choose another set of tiles

 Precompute multiple tables
• How combine table values?

• E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (dif subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDDFS

Adapted from Richard Korf presentation © Daniel S. Weld 26

Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values

Adapted from Richard Korf presentation

© Daniel S. Weld 27

Disjoint Pattern DBs
• Partition tiles into disjoint sets

 For each set, precompute table
• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up heuristic values for each set
 Can add values without overestimating!

 Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation

9 10 11 12
13 14 15

1 2 3 4
5 6 7 8

© Daniel S. Weld 28

Performance
• 15 Puzzle: 2000x speedup vs Manhattan dist

 IDA* with the two DBs shown previously solves
15 Puzzles optimally in 30 milliseconds

• 24 Puzzle: 12 million x speedup vs Manhattan
 IDA* can solve random instances in 2 days.
 Requires 4 DBs as shown

• Each DB has 128 million entries
 Without PDBs: 65000 years

Adapted from Richard Korf presentation

© Daniel S. Weld 29

Outline
Problem spaces
Search

Blind
Informed
Local
Heuristics & Pattern DBs for
Constraint satisfaction

Adversary search

√
√

√

√
√
√

 Definition
• Factoring state spaces

 Backtracking policies
 Variable-ordering heuristics
 Preprocessing algorithms

© Daniel S. Weld 30

Constraint Satisfaction
• Kind of search in which

 States are factored into sets of variables
 Search = assigning values to these variables
 Structure of space is encoded with constraints

• Backtracking-style algorithms work
 E.g. DFS for SAT (i.e. DPLL)

• But other techniques add speed
 Propagation
 Variable ordering
 Preprocessing

6

© Daniel S. Weld 31

Chinese Food as Search?
• States?

• Operators?

• Start state?

• Goal states?

• Partially specified meals

• Add, remove, change dishes

• Null meal

• Meal meeting certain conditions (rating?)
© Daniel S. Weld 32

Factoring States
• Rather than state = meal
• Model state’s (independent) parts, e.g.

Suppose every meal for n people
Has n dishes plus soup

 Soup =
 Meal 1 =
 Meal 2 =
 …
 Meal n =

• Or… physical state =
 X coordinate =
 Y coordinate =

© Daniel S. Weld 33

Chinese Constraint Network

Soup

Total Cost
< $30

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both
Spicy

© Daniel S. Weld 34

CSPs in the Real World

• Scheduling space shuttle repair
• Airport gate assignments
• Transportation Planning
• Supply-chain management
• Computer configuration
• Diagnosis
• UI optimization
• Etc...

© Daniel S. Weld 35

Binary Constraint Network
• Set of n variables: x1 … xn
• Value domains for each variable: D1 … Dn
• Set of binary constraints (also “relations”)

 Rij ⊆ Di × Dj
 Specifies which value pairs (xi xj) are consistent

• V for each country
• Each domain = 4 colors
• Rij enforces ≠

© Daniel S. Weld 36

Binary Constraint Network
Partial assignment of values = tuple of pairs

{...(x, a)…} means variable x gets value a...
Tuple=consistent if all constraints satisfied
Tuple=full solution if consistent + has all vars

Tuple {(xi, ai) … (xj, aj)} = consistent w/ a set
of vars {xm … xn}

iff ∃ am … an such that
{(xi, ai)…(xj, aj), (xm, am)…(xn, an)} } = consistent

7

© Daniel S. Weld 37

Cryptarithmetic
SEND

+ MORE

MONEY

• State Space
 Set of states
 Operators [and costs]
 Start state
 Goal states

• Variables?
• Domains (variable values)?
• Constraints?

© Daniel S. Weld 38

Classroom Scheduling
• Variables?

• Domains (possible values for variables)?

• Constraints?

© Daniel S. Weld 39

N Queens
• As a CSP?

© Daniel S. Weld 40

N Queens
• Variables = board columns
• Domain values = rows
• Rij = {(ai, aj) : (ai ≠ aj) ∧ (|i-j| ≠ |ai-aj|)

 e.g. R12 = {(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)}

Q

Q

Q

• {(x1, 2), (x2, 4), (x3, 1)} consistent with (x4)
• Shorthand: “{2, 4, 1} consistent with x4”

© Daniel S. Weld 41

CSP as a search problem?

• What are states?
 (nodes in graph)

• What are the operators?
 (arcs between nodes)

• Initial state?
• Goal test?

Q

Q

Q

© Daniel S. Weld 42

Chronological Backtracking (BT)
(e.g., depth first search)

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

1

2

3
4

5

6

Consistency check performed in the
order in which vars were instantiated

If c-check fails,
try next value of current var

If no more values,
backtrack to most recent var

8

© Daniel S. Weld 43

Backjumping (BJ)
• Similar to BT, but

 more efficient when no consistent instantiation
can be found for the current var

• Instead of backtracking to most recent var…
 BJ reverts to deepest var which was c-checked

against the current var

BJ Discovers
(2, 5, 3, 6) inconsistent with x6

No sense trying other values of x5

Q

Q

Q

Q

Q

© Daniel S. Weld 44

5

Conflict-Directed Backjumping (CBJ)
• More sophisticated backjumping behavior
• Each variable has conflict set CS

 Set of vars that failed c-checks w/ current val
 Update this set on every failed c-check

• When no more values to try for xi
 Backtrack to deepest var, xd, in CS(xi)
 And update CS(xd):=CS(xd)∪CS(xi)-{xd}

CBJ Discovers
(2, 5, 3)
inconsistent
with {x5, x6 }

Q

Q

Q

Q

Q

1 1
3

2
3

3 3

21
2
3
4
5
6

x1 x2 x3 x4 x5 x6

CS(x5)
1,2,3

CS(x6)
1,2,3,5

© Daniel S. Weld 45

BT vs. BJ vs. CBJ

{

© Daniel S. Weld 46

Forward Checking (FC)
• Perform Consistency Check Forward
• Whenever a var is assigned a value

 Prune inconsistent values from
 As-yet unvisited variables
 Backtrack if domain of any var ever collapses

Q

Q

Q

Q

Q

FC only visits consistent nodes
but not all such nodes
skips (2, 5, 3, 4) which CBJ visits

But FC can’t detect that
(2, 5, 3) inconsistent with {x5, x6 }

© Daniel S. Weld 47

Number of Nodes Explored
BT=BM

BJ=BMJ=BMJ2

CBJ=BM-CBJ

FC-CBJ

FC

More

Fewer
=BM-CBJ2

© Daniel S. Weld 48

Number of Consistency Checks

BMJ2

BT

BJ

BMJ

BM-CBJ

CBJ
FC-CBJ

BM

BM-CBJ2

FC

More

Fewer

