

Logistics

- Reading for Wednesday

Ch 11 "Planning"

- Projects

Did we get everyone?

- Office Hour

Monday 3-4pm
Except.... Today only 3-3:20

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned.
Prove: the unicorn is horned.
$M=$ mythical
$I=$ immortal
$A=$ mammal
$H=$ horned

Review of "Last Time"

- Propositional Logic Resolution DPLL WalkSAT
- Expressiveness vs. Tractability
- Randomly Generating SAT

DPLL (for real!)

Davis - Putnam - Loveland - Logemann
dpll(F, literal)\{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing \neg literal
if (F contains empty clause)
return false;
if (F contains a unit or pure L)
return dpll(F, L);
choose V in F;
if (dpll(F, \neg V))return true;
return dpll(F, V);
\}

WalkSat

- Local search over space of complete truth assignments

With probability P : flip any variable in any unsatisfied clause
With probability (1-P): flip best variable in any unsat clause

- Like fixed-temperature simulated annealing
- SAT encodings of N-Queens, scheduling
- Best algorithm for random K-SAT

Best DPLL: 700 variables
Walksat: 100,000 variables
[Slide \#s from 2001]

Random 3-SAT	
	Complexity peak coincides with solubility transition
	$1 / n<4.3$ problems underconstrained and SAT
	$\mathrm{I} / \mathrm{n}>4.3$ problems overconstrained and UNSAT
	$1 / n=4.3$, problems on "knife-edge" between SAT and UNSAT

Themes

Expressiveness

Expressive but awkward
No notion of objects, properties, or relations
Number of propositions is fixed
Tractability
NPC in general
Completeness / speed tradeoff
Horn clauses, binary clauses

Propositional. Logic vs. First Order

Ontology	Facts (P, Q)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables \& quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, GSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable

More Definitions

```
- Logical connectives: and, or, not, =>
- Quantifiers:
\(\forall\) Forall
\(\exists\) There exists
- Examples
Dumbo is grey
Elephants are grey
There is a grey elephant
```


FOL Definitions

- Constants: a, b, dog33.

Name a specific object.

- Variables. X, Y.

Refer to an object without naming it.

- Functions dad-of

Mapping from objects to objects.

- Terms dad-of(dog33)

Refer to objects

- Atomic Sentences. in(dad-of(dog33), food6) Can be true or false Correspond to propositional symbols P, Q

Nested Quantifiers: Order matters!
 $$
\forall x \exists y \mathrm{P}(x, y) \neq \exists y \forall x \mathrm{P}(x, y)
$$

- Examples

Every dog has a tail Every dog shares a tail!
$\forall d \exists t \operatorname{has}(d, t)$? $\exists t \forall d \operatorname{has}(d, t)$
Someone is loved by everyone
$\exists x \forall y$ loves (y, x)

Semantics

- Syntax a description of the legal arrangements of symbols (Def "sentences")
- Semantics: what the arrangement of symbols means in the world

Satisfiability, Validity, \& Entailment

- S is valid if it is true in all interpretations
- S is satisfiable if it is true in some interp
- S is unsatisfiable if it is false all interps I=
- S1 entails S2 if
forall interps where S1 is true,
S 2 is also true

Skolemization

- Existential quantifiers aren't necessary!

Existential variables can be replaced by

- Skolem functions (or constants)
- Args to function are all surrounding \forall vars
- $\forall d \exists \dagger$ has (d, \dagger)
$\forall d$ has $(d, f(d))$
- $\exists x \forall y \operatorname{loves}(y, x)$
$\forall y \operatorname{loves}(y, f())$
$\forall y$ loves $\left(y, f_{97}\right)$

Forward Chaining

- Given
$\forall ? x$ lifeform(?x) $=>$ mortal(? (x)
\forall ? \times mammal $(? x)=>$ lifeform $(? x)$
$\forall ? \times \operatorname{dog}(? x)=>$ mammal($? x$) dog(fido)
- Prove
mortal(fido)

Unification

Emphasize variables with?
Useful for FO inference (modus ponens, ...)
Also for compilation of FOPC \rightarrow propositional
Unify (Φ, Ψ) returns "mgu"
Unify(city(?a), city(kent)) returns ?a/kent
Substitute(expr, mapping) returns new expr Substitute(connected(?a, ?b), \{?a/kent\}) returns connected(kent, ?b)

Resolution

[Robinson 1965]

First-Order Resolution

Is it the case that $\Sigma \mid=\Phi$?

- Method

Let $\vartheta=\Sigma \wedge \neg \Phi$
Convert ϑ to clausal form

- Standardize variables
- Move quantifiers to front, skolemize to remove \exists
- Replace \Rightarrow with \vee and \neg
- Demorgan's laws...

Resolve until get empty clause

First-Order Resolution
[Robinson 1965]

-The negation of something which unifies in the other
-Result is disjunction of other literals / mgu

Example

- Given
$\forall ? \times \operatorname{man}(? x)=>$ mortal $(? x)$
$\forall ? x$ woman(?x) $=>$ mortal(? x)
$\forall ? x$ person $(? x)=>\operatorname{man}(? x) \vee \operatorname{woman}(? x)$ person(kelly)
- Prove
mortal(kelly)
$[\neg \mathrm{m}(? \mathrm{P}), \mathrm{d}(? \mathrm{x})][\neg \mathrm{w}(? \mathrm{y}), \mathrm{d}(? \mathrm{y})][\neg \mathrm{p}(? \mathrm{z}), \mathrm{m}(? \mathrm{z}), \mathrm{w}(? \mathrm{zz})][\mathrm{p}(\mathrm{k})][\neg \mathrm{d}(\mathrm{k})]$

Example Continued

KR with Description Logics

Tbox	
- Term definitions	
- FO Language + inference organized into a	
$\begin{aligned} & \text { father }(x)=\operatorname{person}(x) \wedge \text { male }(x) \wedge \exists y \operatorname{childof}(y, x) \\ & \operatorname{parent}(x)=\operatorname{person}(x) \wedge \exists y \operatorname{childof}(y, x) \end{aligned}$	
- Complexity of classifying new terms subsumption	
person	
Subsumption hierarchy \rightarrow	father mother
	grandmother

Debate

- Restricted language thesis

Disjunction, negation, particularization, order... Natural kinds
Restricted classification thesis
Concepts using contingent information:
Treatable disease, democratic country, illegal act
Counterargument
Constructs: Omit vs limit
Completeness
Efficiency

Compilation to Prop. Logic II

- Universe
- Cities: seattle, tacoma, enumclaw
- Firms: IBM, Microsoft, Boeing
- First-Order formula
$\forall_{\text {city }} c \exists_{\text {firm }} f$ hasHQ(c,f)
Equivalent propositional formula

Compilation to Prop. Logic I

- Typed Logic
$\forall_{\text {city }} a, b$ connected (a, b)
- Universe

Cities: seattle, tacoma, enumclaw

- Equivalent propositional formula:
Hey!
- You said FO Inference is semi-decidable
- But you compiled it to SAT
Which is NP Complete
- So now we can always do the inference?!?
Tho it might take exponential time...
- Something seems wrong here....????

```
Restricted Forms of FO Logic
Known, Finite Universes
    Compile to SAT
Frame Systems
    Ban certain types of expressions
Horn Clauses
    Aka Prolog
Function-Free Horn Clauses
    Aka Datalog
```

