
1

Knowledge Representation
II

CSE 573

© Daniel S. Weld 2

Logistics

•Reading for Monday
 ???

•Office Hours
 No Office Hour Next Monday (10/25)
 Bonus Office Hour: Today 3-4

• Or email me

© Daniel S. Weld 3

573 Topics

Agency
Problem Spaces

Search
Knowledge Representation & Inference

Planning
Supervised
Learning

Logic-Based Probabilistic

Reinforcement
Learning

© Daniel S. Weld 4

Ways to make “plans”
Generative Planning

Reason from first principles (knowledge of actions)
Requires formal model of actions

Case-Based Planning
Retrieve old plan which worked on similar problem
Revise retrieved plan for this problem

Reinforcement Learning
Act ”randomly” - noticing effects
Learn reward, action models, policy

© Daniel S. Weld 5

Generative Planning

Input
Description of (initial state of) world (in some KR)
Description of goal (in some KR)
Description of available actions (in some KR)

Output
Controller

E.g. Sequence of actions
E.g. Plan with loops and conditionals
E.g. Policy = f: states -> actions

© Daniel S. Weld 6

Input Representation
• Description of initial state of world

 E.g., Set of propositions:
 ((block a) (block b) (block c) (on-table a) (on-table

b) (clear a) (clear b) (clear c) (arm-empty))
• Description of goal: i.e. set of worlds or ??

 E.g., Logical conjunction
 Any world satisfying conjunction is a goal
 (and (on a b) (on b c)))

• Description of available actions

2

© Daniel S. Weld 7

Simplifying Assumptions

Environment

Percepts Actions

What action
next?

Static
vs.

Dynamic

Fully Observable
vs.

Partially
Observable

Deterministic
vs.

Stochastic

Instantaneous
vs.

Durative

Full vs. Partial
satisfaction

Perfect
vs.

Noisy

© Daniel S. Weld 8

Classical Planning

EnvironmentStatic

Fully Observable
Deterministic Instantaneous

Full

Perfect

I = initial state G = goal state Oi(prec) (effects)

[I] Oi Oj Ok Om [G]

© Daniel S. Weld 9

Planning Outline
• The planning problem
• Representation
• Compilation to SAT
• Searching world states

 Regression
 Heuristics

• Graphplan
• Reachability analysis & heuristics

• Planning under uncertainty
© Daniel S. Weld 10

How Represent Actions?
• Simplifying assumptions

 Atomic time
 Agent is omniscient (no sensing necessary).
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions
 Actions:

• Precondition: (conjunction of literals)
• Effects (conjunction of literals)

north11 north12

W0 W2W1

© Daniel S. Weld 11

How Represent Actions?

• Simplifying assumptions
 Atomic time
 Agent is omniscient (no sensing necessary).
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions
 Actions:

• Precondition: (conjunction of literals)
• Effects (conjunction of literals)

© Daniel S. Weld 12

How Encode STRIPS Logic ?

3

© Daniel S. Weld 13

Time in STRIPS Representation
• Action = function: worldState→ worldState
• Precondition

 says where function defined
• Effects

 say how to change set of propositions

a
anorth11

W0 W1

north11
precond: (and (agent-at 1 1)

(agent-facing north))

effect: (and (agent-at 1 2)
(not (agent-at 1 1)))

Note:
stri

ps doesn
’t

allo
w deriv

ed eff
ect

s;

you must b
e co

mplete
!

© Daniel S. Weld 14

Action Schemata

(:operator pick-up
:parameters ((block ?ob1))
:precondition (and (clear ?ob1)

(on-table ?ob1)
(arm-empty))

:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (arm-empty))
(holding ?ob1)))

• Instead of defining:
pickup-A and pickup-B and …

• Define a schema:
Note: strips doesn’t

allow derived effects;

you must be complete!}

© Daniel S. Weld 15

Time Arguments in Logic

On(a, b, 0)
Have(bluePaint, 0)
Red(a, 0)

On(b,a, ?)
Blue(a, ?)

Init
ial

Con
diti

ons

Goal

Closed World Assumption
© Daniel S. Weld 16

Preconditions & Effects
• If action is executed at time t

Paint(a, blue, t)
p: Have(bluePaint, t-1)
e: Blue(a, t+1)

¬Have(bluePaint, t+1)

Paint(a, blue, t) =>
Have(bluePaint, t-1)

Paint(a, blue, t) =>
Blue(a, t+1) ∧ ¬Have(bluePaint, t+1)

Propositions: even
Actions: odd

© Daniel S. Weld 17

Issues
• Frame problem
• Ramification problem
• Qualification problem

Paint(a, blue)
p: Have(bluePaint)
e: Blue(a)

¬Have(bluePaint)

On(a, b)
Red(a)

Blue(a)

© Daniel S. Weld 18

Compilation to SAT
• Init state
• Actions
• Goal ?

4

© Daniel S. Weld 19

The Idea
• Suppose a plan of length n exists
• Encode this hypothesis in SAT

 Init state true at t0
 Goal true at Tn
 Actions imply effects, etc

• Look for satisfying assignment
• Decode into plan

RISC: The Revolutionary Excitement
© Daniel S. Weld 20

History
• Green IJCAI-69
• STRIPS AIJ-71
• Decades of work on “specialized theorem

provers”
• Kautz+Selman ECAI-92
• Rapid progress on SAT solving
• Kautz+Selman AAAI-96

 Electrifying results (on hand coded formulae)
• Kautz, McAllester & Selman KR-96

 Variety of encodings (but no compiler)
• CSE 573 => Ernst et al. IJCAI-97

© Daniel S. Weld 21

Blackbox
• Blackbox solves planning problems by converting

them into SAT.
 Very fast
 Initially hand copiled SAT; later…
 Tried different solvers

• Local search (GSAT)
• Systematic search with EBL (RelSAT)

• In 2000, GP-CSP could beat Blackbox
 But in 2001, a newer “SUPER-DUPER” SAT solver called

CHAFF was developed,
 CSP people are trying to copy over the ideas from CHAFF

to CSP.
• In 2004, Blackbox…

© Daniel S. Weld 22

Medic

Init state
Actions
Goal

Plan

Planner

Compiler Logic
Simplification DecoderSAT

Solver

© Daniel S. Weld 23

Axioms

¬Act1(…, t) ∨ ¬Act2(…, t)Exclude
Act1(…, t) ∨ Act2(…, t) ∨ …At-least-one
Classical / ExplanatoryFrame

Paint(A,Red,t) ⇒ Block(A, t-1)
Paint(A,Red,t) ⇒ Color(A, Red, t+1)

A ⇒ P, E
The goal holds at t=2nGoal
The initial state holds at t=0Init
Description / ExampleAxiom

© Daniel S. Weld 24

Space of Encodings
• Action Representations

 Regular
 Simplyu-Split
 Overloaded-Split
 Bitwise

• Frame Axioms
 Classical
 Explanitory

5

© Daniel S. Weld 25

Frame Axioms
• Classical

 ∀P, A, t if P@t-1 ∧
 A@t ∧
 A doesn’t affect P
 then P@t+1

• Explanatory
 ∀P, A, t if P@t-1 ∧ ¬P@t+1
 then A1@t ∨ A2@t ∨ …
 forall Ai that do affect P

© Daniel S. Weld 26

Action Representation

Paint-A-Red,
Paint-A-Blue,
Move-A-Table

fully-instantiated actionRegular

ExampleOne Propositional
Variable per

Representation

Paint-Arg1-A ∧
Paint-Arg2-Red

fully-instantiated
action’s argument

Simply-split

Act-Paint ∧ Arg1-A
∧ Arg2-Red

fully-instantiated
argument

Overloaded-split

more
vars

more
clses

Bit1 ∧ ~Bit2 ∧
Bit3

Binary encodings of
actions

Bitwise

Paint-A-Red = 5

© Daniel S. Weld 27

Main Ideas
• Clear taxonomy
• Utility of

 Explanatory frame axioms (most things don’t change)
 Parallelism & conflict exclusion
 Type inference
 Domain axioms

• Surprising
 Effectiveness of regular action encodings

© Daniel S. Weld 28

Comparison Among Encodings

• Explanatory Frames beat classical
- few actions affect each fluent
- explanatory frames aid simplifications

• Parallelism is a major factor
- fewer mutual exclusion clauses
- fewer time steps

• Regular actions representation is smallest!
- exploits full parallelism
- aids simplification

• Overloaded, bitwise reps. are infeasible
- prohibitively many clauses
- sharing hinders simplification

© Daniel S. Weld 29

Optimization 1: Factored Splitting
- use partially-instantiated actions

HasColor-A-Blue-(t-1) ^ Paint-Arg1-B-t ^
Paint-Arg2-Red-t ⇒ HasColor-A-Blue-(t+1)

.38.20

.50.30

.69.46

OverloadedSimple

Literals

Clauses

Variables

factored
unfactored

Explanatory Frames

© Daniel S. Weld 30

Optimization 2: Types

A type is a fluent which no actions affects.
• type interference
• prune impossible operator instantiations
• type elimination

.10

.27

.97

.39

.74.67

.30.34

Explanatory

Classical

Type opts
No type opts

Literals BitwiseOverloadedSimpleRegular

6

© Daniel S. Weld 31

Domain-Specific Axioms

Adding domain-specific axioms
increases clauses
decreases variables
decreases solve time dramatically.

2.24
1.84
1.53

<.05.86
.38.88
.26.86

Clauses TimeVars

c
b
a

domain info
no domain info
bw-

large

© Daniel S. Weld 32

Future Work
• Negation, disjunctive preconds, ∀
• Domain axioms

 ∀t clear(x, t) ≡ ¬ ∃y on(y, x, t)

© Daniel S. Weld 33

Future Work
• Automatically choose best encoding

 Might do this for frame axioms
• Analyze SAT formulae structure

 Generate WalkSAT params
 Which SAT solver works best (DPLL vs ?

• Handle continuous vars (resource planning)
 Steve Wolfman’s quals project, IJCAI99

© Daniel S. Weld 34

Future Work
• Reachability analysis
• Domain axioms
• Compilation to …?

 CSP
 LP (Linear programming)
 Integer LP
 SAT + LP

© Daniel S. Weld 35

Domain Axioms
• Domain knowledge

 Synchronic vs. Diachronic constraints
• Speedup knowledge

 Action conflicts (=> by action schemata alone)

 Domain invariants (=> by initial state+schemata)

 Optimality heuristics

 Simplifying assumptions

