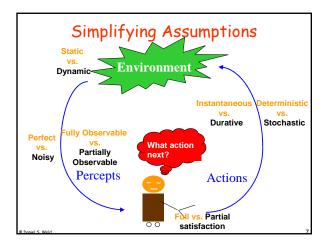
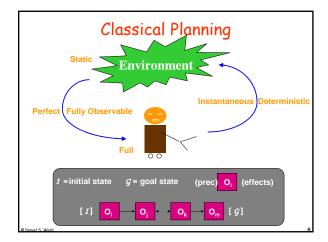
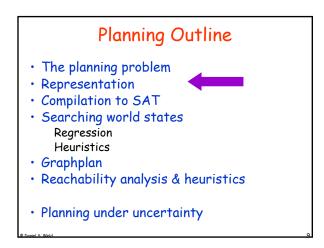
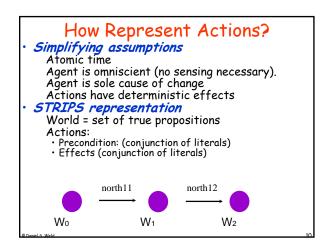
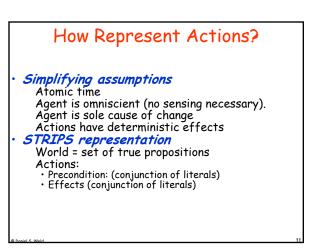

Generative Planning

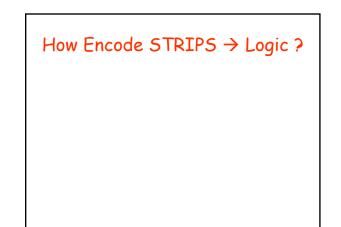

Input

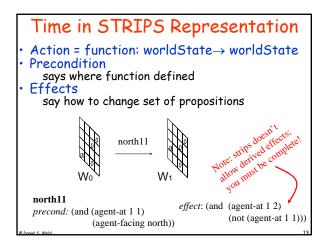

Description of (initial state of) world *(in some KR)* Description of goal *(in some KR)* Description of available actions *(in some KR)*

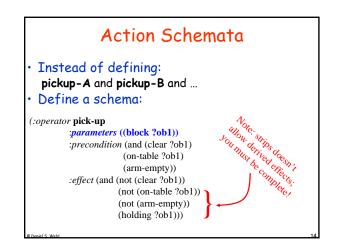

Output

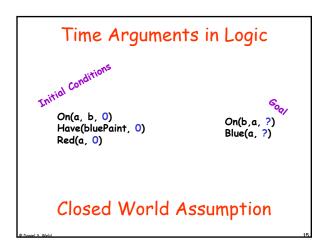

- Controller
 - E.g. Sequence of actions E.g. Plan with loops and conditionals E.g. Policy = f: states -> actions

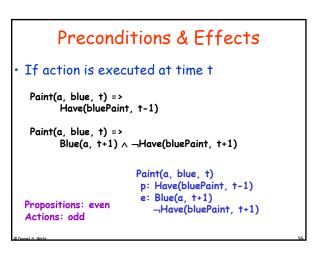


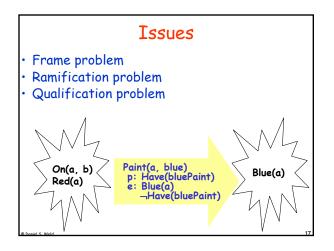


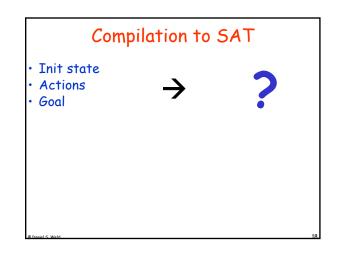


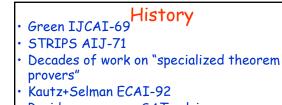


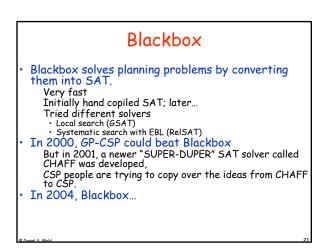


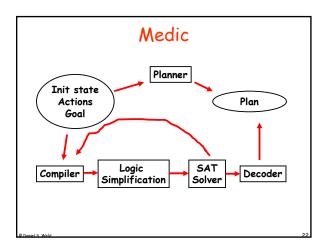




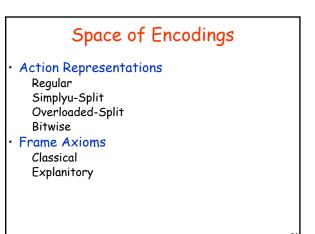





The Idea


- Suppose a plan of length n exists
 Encode this hypothesis in SAT Init state true at t₀ Goal true at T_n Actions imply effects, etc
- Look for satisfying assignment
- Decode into plan

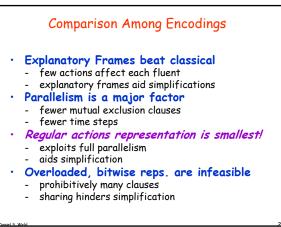
RISC: The Revolutionary Excitement

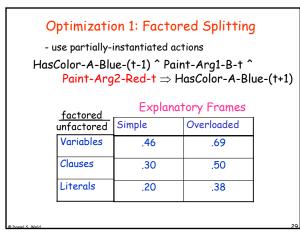


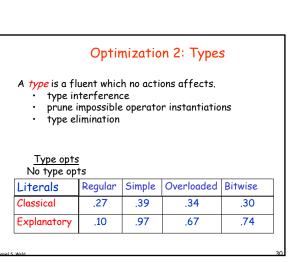
- Rapid progress on SAT solving
- Kautz+Selman AAAI-96 Electrifying results (on hand coded formulae)
- Kautz, McAllester & Selman KR-96 Variety of encodings (but no compiler)
- CSE 573 => Ernst et al. IJCAI-97

	Axioms
Axiom	Description / Example
Init	The initial state holds at t=0
Goal	The goal holds at t=2n
$A \Rightarrow P, E$	$\begin{array}{l} Paint(A,Red,t) \Rightarrow Block(A,t-1)\\ Paint(A,Red,t) \Rightarrow Color(A,Red,t+1) \end{array}$
Frame	
At-least-one	_
Exclude	_

Frame Axioms


• Classical


∀P, A, t if P@t-1 ∧ A@t ∧ A doesn't affect P then P@t+1


Explanatory

Representation	One Propositional Variable per	Example
Regular	fully-instantiated action	Paint-A-Red, Paint-A-Blue, Move-A-Table
Simply-split	fully-instantiated action's argument	Paint-Arg1-A ∧ Paint-Arg2-Red
Overloaded-split	fully-instantiated argument	Act-Paint ^ Arg1-A ^ Arg2-Red
Bitwise	Binary encodings of actions	Bit1 ∧ ~Bit2 ∧ Bit3

Main Ideas • Clear taxonomy • Utility of Explanatory frame axioms (most things don't change) Parallelism & conflict exclusion Type inference Domain axioms • Surprising Effectiveness of regular action encodings

	Do	main-S	pecific A	xioms
-	increase decreas	-specific es clauses es variab es solve	5	cally.
		<u>nain info</u> Imain info	D	
	bw- large	Vars	Clauses	Time
	۵	.86	1.53	.26
	b	.88	1.84	.38
	с	.86	2.24	<.05

Future Work

 Negation, disjunctive preconds, ∀
 Domain axioms ∀t clear(x, t) ≡ ¬∃y on(y, x, t)

Future Work

Automatically choose best encoding Might do this for frame axioms
Analyze SAT formulae structure Generate WalkSAT params Which SAT solver works best (DPLL *vs*?
Handle continuous vars (resource planning) Steve Wolfman's quals project, IJCAI99

Future Work

- Reachability analysis
- Domain axioms
- Compilation to ...? CSP LP (Linear programming) Integer LP
 - SAT + LP

Domain Axioms

· Domain knowledge

Synchronic vs. Diachronic constraints

Speedup knowledge Action conflicts (=> by action schemata alone)

Domain invariants (=> by initial state+schemata)

Optimality heuristics

Simplifying assumptions