CSEP 546: Data Mining

Instructor: Pedro Domingos

Today's Agenda

- Inductive learning
- · Decision trees

Inductive Learning

Supervised Learning

- Find: A good approximation to f.

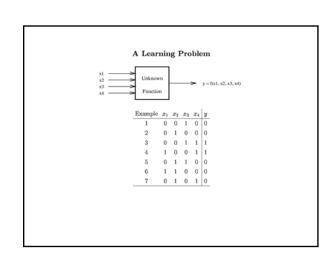
Example Applications

- Credit risk assessment
- $\mathbf{x} \colon$ Properties of customer and proposed purchase. $f(\mathbf{x})$: Approve purchase or not.
- Disease diagnosis
- \mathbf{x} : Properties of patient (symptoms, lab tests)
- $f(\mathbf{x}):$ Disease (or maybe, recommended the rapy)
- Face recognition
- x: Bitmap picture of person's face f(x): Name of the person.

- Automatic Steering
 x: Bitmap picture of road surface in front of car.
- $f(\mathbf{x})$: Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

- \bullet Situations where there is no human expert
- x: Bond graph for a new molecule. $f(\mathbf{x})$: Predicted binding strength to AIDS protease molecule.
- Situations where humans can perform the task but can't describe how they do it.
- $\mathbf{x} \colon \overset{\cdot}{\text{Bitmap}}$ picture of hand-written character
- $f(\mathbf{x})$: Ascii code of the character
- \bullet Situations where the desired function is changing frequently
- \mathbf{x} : Description of stock prices and trades for last 10 days. $f(\mathbf{x})$: Recommended stock transactions
- \bullet Situations where each user needs a customized function f
- \mathbf{x} : Incoming email message
- $f(\mathbf{x})$: Importance score for presenting to user (or deleting without presenting).



Hypothesis Spaces

 Complete Ignorance. There are 2¹⁶ = 65536 possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2⁹ possibilities.

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	?
1	1	1	0	?
1	1	1	1	?

Hypothesis Spaces (2)

• Simple Rules. There are only 16 simple conjunctive rules.

Rule	Counterexample
⇒ y	1
$x_1 \Rightarrow y$	3
$x_2 \Rightarrow y$	2
$x_3 \Rightarrow y$	1
$x_4 \Rightarrow y$	7
$x_1 \wedge x_2 \Rightarrow y$	3
$x_1 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \Rightarrow y$	3
$x_2 \land x_4 \Rightarrow y$	3
$x_3 \wedge x_4 \Rightarrow y$	4
$x_1 \wedge x_2 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3

No simple rule explains the data. The same is true for simple clauses.

Hypothesis Space (3)

 \bullet m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

	Counterexample				
variables	1-of	2-of	3-of	4-of	
{x1}	3	-	-	-	
$\{x_2\}$	2	-	-	-	
$\{x_3\}$	1	-	-	-	
$\{x_4\}$	7	-	-	-	
$\{x_1, x_2\}$	3	3	-	-	
$\{x_1, x_3\}$	4	3	-	-	
$\{x_1, x_4\}$	6	3	-	-	
$\{x_2, x_3\}$	2	3			
$\{x_2, x_4\}$	2	3	-	-	
$\{x_3, x_4\}$	4	4	-	-	
$\{x_1, x_2, x_3\}$	1	3	3	-	
$\{x_1, x_2, x_4\}$	2	3	3	-	
$\{x_1, x_3, x_4\}$	1	***	3		
$\{x_2, x_3, x_4\}$	1	5	3	-	
$\{x_1, x_2, x_3, x_4\}$	1	5	3	3	

Two Views of Learning

- Learning is the removal of our remaining uncertainty. Suppose we knew that
 the unknown function was an m-of-n boolean function, then we could use the training
 examples to infer which function it is.
- Learning requires guessing a good, small hypothesis class. We can start with
 a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!

- Our prior knowledge might be wrong
- Our guess of the hypothesis class could be wrong

 The smaller the hypothesis class, the more likely we are wrong

Example: $x_4 \wedge Oneof\{x_1, x_3\} \Rightarrow y$ is also consistent with the training data.

Example: $x_4 \wedge \neg x_2 \Rightarrow y$ is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x values.

Two Strategies for Machine Learning

- Develop Languages for Expressing Prior Knowledge: Rule grammars and stochastic models.
- Develop Flexible Hypothesis Spaces: Nested collections of hypotheses.
 Decision trees, rules, neural networks, cases.

In either case:

• Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

- \bullet Target function (target concept). The true function f.
- ullet Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Key Issues in Machine Learning

- What are good hypothesis spaces?
 Which spaces have been useful in practical applications and why?
- What algorithms can work with these spaces?
 Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points?
 This is sometimes called the "problem of overfitting".
- How can we have confidence in the results?

 How much training data is required to find accurate hypotheses? (the statistical question)
- Are some learning problems computationally intractable? (the computational question)
- How can we formulate application problems as machine learning problems? (the engineering question)

A Framework for Hypothesis Spaces

- Size. Does the hypothesis space have a fixed size or variable size?
 Fixed-size spaces are easier to understand, but variable-size spaces are generally more useful. Variable-size spaces introduce the problem of overfitting.
- Randomness. Is each hypothesis deterministic or stochastic?
 This affects how we evaluate hypotheses. With a deterministic hypothesis, a training example is either consistent (correctly predicted) or inconsistent (incorrectly predicted).
 With a stochastic hypothesis, a training example is more likely or less likely.
- Parameterization. Is each hypothesis described by a set of symbolic (discrete) choices
 or is it described by a set of continuous parameters? If both are required, we say the
 hypothesis space has a mixed parameterization.

Discrete parameters must be found by combinatorial search methods; continuous parameters can be found by numerical search methods.

A Framework for Learning Algorithms

• Search Procedure.

Direction Computation: solve for the hypothesis directly.

Local Search: start with an initial hypothesis, make small improvements until a local optimum.

Constructive Search: start with an empty hypothesis, gradually add structure to it until local optimum.

• Timing

Eager: Analyze the training data and construct an explicit hypothesis.

Laxy: Store the training data and wait until a test data point is presented, then construct an ad hoc hypothesis to classify that one data point.

• Online vs. Batch. (for eager algorithms)

Online: Analyze each training example as it is presented.

Batch: Collect training examples, analyze them, output an hypothesis.

Decision Trees

Learning Decision Trees

Decision trees provide a very popular and efficient hypothesis space.

- \bullet Variable Size. Any boolean function can be represented.
- Deterministic.
- Discrete and Continuous Parameters.

Learning algorithms for decision trees can be described as

- Constructive Search. The tree is built by adding nodes.
- Eager
- \bullet **Batch** (although online algorithms do exist).

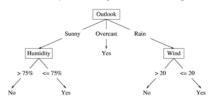
Decision Tree Hypothesis Space

- ullet Internal nodes test the value of particular features x_j and branch according to the results of the test.
- Leaf nodes specify the class h(x).

Suppose the features are Outlook (x_1) , Temperature (x_2) , Humidity (x_3) , and Wind (x_4) . Then the feature vector $\mathbf{x} = (Sunny, Hot, High, Strong)$ will be classified as No. The Temperature feature is irrelevant.

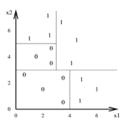
Decision Tree Hypothesis Space

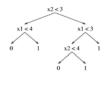
If the features are continuous, internal nodes may test the value of a feature against a threshold.



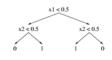
Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.





Decision Trees Can Represent Any Boolean Function



The tree will in the worst case require exponentially many nodes, however.

Decision Trees Provide Variable-Size Hypothesis Space

As the number of nodes (or depth) of tree increases, the hypothesis space grows

- \bullet \mathbf{depth} 1 ("decision stump") can represent any boolean function of one feature.
- depth 2 Any boolean function of two features; some boolean functions involving three features (e.g., $(x_1 \land x_2) \lor (\neg x_1 \land \neg x_3)$
- etc.

Learning Algorithm for Decision Trees

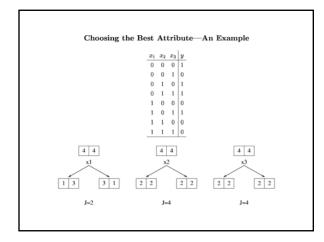
The same basic learning algorithm has been discovered by many people independently:

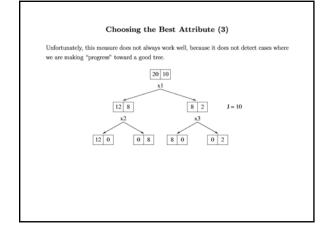
 $\begin{aligned} & \text{GrowTree}(S) \\ & \text{if } (y = 0 \text{ for all } (\mathbf{x}, y) \in S) \text{ return } \text{new leaf}(0) \\ & \text{else if } (y = 1 \text{ for all } (\mathbf{x}, y) \in S) \text{ return } \text{new leaf}(1) \\ & \text{else} \\ & \text{choose best attribute } x_j \\ & S_0 = \text{all } (\mathbf{x}, y) \in S \text{ with } x_j = 0; \\ & S_1 = \text{all } (\mathbf{x}, y) \in S \text{ with } x_j = 1; \\ & \text{return } \text{new } \text{node}(x_j, \text{GRowTree}(S_0), \text{GrowTree}(S_1)) \end{aligned}$

Choosing the Best Attribute

One way to choose the best attribute is to perform a 1-step lookahead search and choose the attribute that gives the lowest error rate on the training data.

CHOOSEBESTATTRIBUTE(S) choose j to minimize J_j , computed as follows: $S_0 = \text{all } (\mathbf{x},y) \in S \text{ with } x_j = 0;$ $S_1 = \text{all } (\mathbf{x},y) \in S \text{ with } x_j = 1;$ $y_0 = \text{the most common value of } y \text{ in } S_0$ $y_1 = \text{the most common value of } y \text{ in } S_1$ $J_0 = \text{number of examples } (\mathbf{x},y) \in S_0 \text{ with } y \neq y_0$ $J_1 = \text{number of examples } (\mathbf{x},y) \in S_1 \text{ with } y \neq y_1$ $J_j = J_0 + J_1 \text{ (total errors if we split on this feature)}$ $\mathbf{return } j$





A Better Heuristic From Information Theory

Let V be a random variable with the following probability distribution:

$$\begin{array}{|c|c|c|c|}\hline P(V=0) & P(V=1) \\ \hline 0.2 & 0.8 \\ \hline \end{array}$$

The surprise, S(V=v) of each value of V is defined to be

$$S(V = v) = - \lg P(V = v).$$

An event with probability 1 gives us zero surprise

An event with probability 0 gives us infinite surprise!

It turns out that the surprise is equal to the number of bits of information that need to be transmitted to a recipient who knows the probabilities of the results.

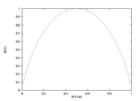
This is also called the description length of V=v. Fractional bits only make sense if they are part of a longer message (e.g., describe a whole sequence of coin tosses).

Entropy

The entropy of V, denoted H(V) is defined as follows:

$$H(V) = \sum_{v=0}^{1} -P(H=v) \lg P(H=v).$$

This is the average surprise of describing the result of one "trial" of V (one coin toss).



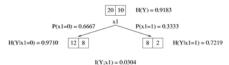
Entropy can be viewed as a measure of uncertainty.

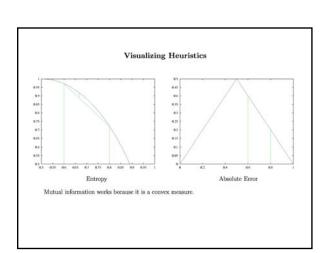
Mutual Information

Now consider two random variables A and B that are not necessarily independent. The mutualinformation between A and B is the amount of information we learn about B by knowning the value of A (and vice versa—it is symmetric). It is computed as follows:

$$I(A;B) = H(B) - \sum_{\cdot} P(B=b) \cdot H(A|B=b)$$

In particular, consider the class Y of each training example and the value of feature x_1 to be random variables. Then the mutual information quantifies how much x_1 tells us about the value of the class Y.





Non-Boolean Features

- Features with multiple discrete values Construct a multiway split?
 Test for one value versus all of the others?
 Group the values into two disjoint subsets?
- Real-valued features

 Consider a threshold split using each observed value of the feature.

Whichever method is used, the mutual information can be computed to choose the best split.

Attributes with Many Values

Problem:

- $\bullet\,$ If attribute has many values, Gain will select it
- Imagine using $Date = Jun_3_1996$ as attribute

One approach: use GainRatio instead

$$GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInformation(S,A)}$$

$$SplitInformation(S,A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

Unknown Attribute Values

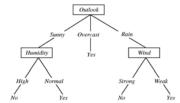
What if some examples are missing values of A?

Use training example anyway, sort through tree

- • If node n tests A, assign most common value of A among other examples sorted to node n
- \bullet Assign most common value of A among other examples with same target value
- Assign probability p_i to each possible value v_i of A Assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion

Overfitting in Decision Trees



Consider adding a noisy training example: Sunny, Hot, Normal, Strong, PlayTennis=No What effect on tree?

Overfitting

Consider error of hypothesis h over

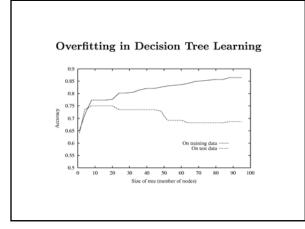
- $\bullet \,$ training data: $error_{train}(h)$
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_{train}(h) < error_{train}(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$



Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- \bullet Grow full tree, then post-prune

How to select "best" tree:

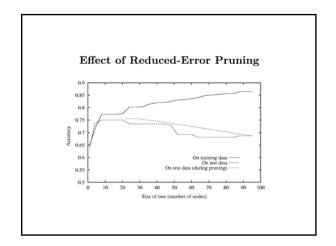
- Measure performance over training data
- Measure performance over separate validation data set
- $\bullet\,$ Add complexity penalty to performance measure

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

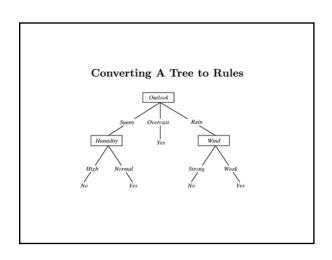
- $1. \ \, \text{Evaluate impact on } \textit{validation} \text{ set of pruning each} \\ \text{possible node (plus those below it)}$
- 2. Greedily remove the one that most improves validation set accuracy



Rule Post-Pruning

- $1. \ \, \text{Convert} \ \text{tree} \ \text{to} \ \text{equivalent} \ \text{set} \ \text{of} \ \text{rules}$
- 2. Prune each rule independently of others
- 3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)



```
 \begin{split} \text{IF} & \quad (Outlook = Sunny) \; AND \; (Humidity = High) \\ \text{THEN} & \quad PlayTennis = No \end{split}   \begin{split} \text{IF} & \quad (Outlook = Sunny) \; AND \; (Humidity = Normal) \\ \text{THEN} & \quad PlayTennis = Yes \\ \dots \end{split}
```

Scaling Up

- ID3, C4.5, etc. assume data fits in main memory (OK for up to hundreds of thousands of examples)
- SPRINT, SLIQ: multiple sequential scans of data (OK for up to millions of examples)
- VFDT: at most one sequential scan (OK for up to billions of examples)

Summary

- Inductive learning
- Decision trees
 - Representation
 - Tree growth
 - Heuristics
 - Overfitting and pruning
 - Scaling up