

Logistics

Reading Ch 13 Ch 14 thru 14.3 Project Writeups due Wednesday November 10 ... 9 days to go ...

Learning from Training Experience

Credit assignment problem:

- **Direct** training examples:
 - E.g. individual checker boards + correct move for each
 - Supervised learning
 - Indirect training examples : • E.g. complete sequence of moves and final result
 - Reinforcement learning
- Which examples:
 - Random, teacher chooses, learner chooses
- Unsupervised Learning

Machine Learning Outline

- Machine learning:
- ✓ Function approximation
- √ Bias
- Supervised learning
- √ Classifiers & concept learning Decision-trees induction (pref bias)
- Overfitting
- Ensembles of classifiers
- Co-training

Need for Bias

- Example space: 4 Boolean attributes
- How many ML hypotheses?

Two Strategies for ML

Restriction bias: use prior knowledge to specify a restricted hypothesis space.

Version space algorithm over conjunctions. **Preference bias**: use a broad hypothesis space, but impose an ordering on the hypotheses.

Decision trees.

Decision Trees

Convenient Representation Developed with learning in mind Deterministic

Expressive

Équivalent to propositional DNF Handles discrete and continuous parameters

Simple learning algorithm

Handles noise well

- Classify as follows
- Constructive (build DT by adding nodes)
- Eager
- Batch (but incremental versions exist)

Decision Tree Algorithm BuildTree(TraingData) Split(TrainingData) Split(D) If (all points in D are of the same class) Then Return For each attribute A Evaluate splits on attribute A Use best split to partition D into D1, D2 Split (D1) Split (D2)

Key Questions

- How to choose best attribute? Mutual Information (Information gain)
 Entropy (disorder)
- When to stop growing tree?
 Non-Boolean attributes
- Missing data
- Missing data

Construct a multi-way split Test for one value *vs.* all of the others? Group values into two disjoint subsets?

· Real-valued Features

Discretize?

Consider a threshold split using observed values?

Attributes with many values

Problem:

- If attribute has many values, Gain will select it
- Imagine using $Date = Jun_3_1996$ as attribute

So many values that it

Divides examples into tiny sets Each set is likely $uniform \rightarrow$ high info gain But poor predictor...

• Need to penalize these attributes

Overfitting...

• DT is overfit when exists another DT' and DT has *smaller* error on training examples, but DT has bigger error on test examples Causes of overfitting Noisy data, or Training set is too small

Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy

Machine Learning Outline

- Machine learning:
- Supervised learning
- Overfitting
- Ensembles of classifiers

Bagging

- Cross-validated committees Boosting
- Stacking

Co-Training Motivation

- Learning methods need labeled data Lots of <x, f(x)> pairs Hard to get... (who wants to label data?)
- But unlabeled data is usually plentiful... Could we use this instead??????

