

## Learning from Training Experience

Credit assignment problem:
Direct training examples:

- E.g. individual checker boards + correct move for each
- Supervised learning

Indirect training examples :

- E.g. complete sequence of moves and final result
- Reinforcement learning

Which examples:
Random, teacher chooses, learner chooses

Unsupervised Learning

## Logistics

- Reading

Ch 13
Ch 14 thru 14.3

- Project

Writeups due Wednesday November 10
... 9 days to 90 ...

## Machine Learning Outline

- Machine learning:
$\checkmark$ Function approximation
$\checkmark$ Bias
- Supervised learning

S Classifiers \& concept learning Decision-trees induction (pref bias)

- Overfitting
- Ensembles of classifiers
- Co-training



## Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.

Version space algorithm over conjunctions.

- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.

Decision trees.

## Decision Trees

## Convenient Representation <br> Developed with learning in mind Deterministic

Expressive
Equivalent to propositional DNF
Handles discrete and continuous parameters
Simple learning algorithm
Handles noise well
Classify as follows

- Constructive (build DT by adding nodes)
- Eager
- Batch (but incremental versions exist)


## Decision Tree Representation

Good day for tennis?
Leaves $=$ classification Arcs = choice of value for parent attribute


Decision tree is equivalent to logic in disjunctive normal form
G-Day $\Leftrightarrow($ Sunny $\wedge$ Normal $) \vee$ Overcast $\vee($ Rain $\wedge$ Weak $)$


## Movie Recommendation

- Features?

| Rambo |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matrix |  |  |  |  |  |  |  |  |  |
| Rambo 2 |  |  |  |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |
| $\bullet$ |  |  |  |  |  |  |  |  |  |
| $\bullet$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## Key Questions

How to choose best attribute?

## Mutual Information (Information gain)

- Entropy (disorder)

When to stop growing tree?
Non-Boolean attributes
Missing data

| Issues |
| :--- |
| - Content vs. Social |
| - Non-Boolean Attributes |
| - Missing Data |
| - Scaling up |

## Missing Data 1

| Day |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Temp | Humid | Wind | Tennis? |  |
| d1 | h | h | weak | n |
| d2 | h | h | s | n |
| d8 | m | h | weak | n |
| d9 | c |  | weak | yes |
| d11 | m | n | s | yes |

Don't use this instance for learning?
Assign attribute ...
most common value at node, or most common value, ... given classification


- $75 \% h$ and $25 \% n$
- Use in information gain calculations
- Further subdivide if other missing attributes
- Same approach to classify test ex with missing attr Classification is most probable classification Summing over leaves where it got divided


## Attributes with many values

Problem:

- If attribute has many values, Gain will select it
- Imagine using Date $=$ Jun_3_1996 as attribute
- So many values that it

Divides examples into tiny sets
Each set is likely uniform $\rightarrow$ high info gain
But poor predictor...

- Need to penalize these attributes


## One approach: Gain ratio

$\operatorname{GainRatio}(S, A) \equiv \frac{\operatorname{Gain}(S, A)}{\operatorname{SplitInformation}(S, A)}$
SplitInformation $(S, A) \equiv-\sum_{i=1}^{c} \frac{\left|S_{i}\right|}{|S|} \log _{2} \frac{\left|S_{i}\right|}{|S|}$
where $S_{i}$ is subset of $S$ for which $A$ has value $v_{i}$
SplitInfo $\cong$ entropy of $S$ wrtvalues of A (Contrast with entropy of $S$ wrt target value)
$\Downarrow$ attribs with many uniformly distrib values e.g. if $A$ splits $S$ uniformly into $n$ sets SplitInformation $=\log _{2}(n)$... $=1$ for Boolean

## Cross validation

- Partition examples into $k$ disjoint equiv classes - Now create $k$ training sets

Each set is union of all equiv classes except one So each set has (k-1)/k of the original training data


## Cross Validation

Partition examples into $k$ disjoint equiv classes
Now create $k$ training sets
Each set is union of all equiv classes except one So each set has (k-1)/k of the original training data


## Machine Learning Outline

Machine learning:
Supervised learning
Overfitting
What is the problem?
Reduced error pruning

- Ensembles of classifiers

Co-training

## Overfitting



## Overfitting...

DT is overfit when exists another $D T^{\prime}$ and DT has smaller error on training examples, but DT has bigger error on test examples

- Causes of overfitting

Noisy data, or
Training set is too small

## Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure


## Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible node (plus those below it)
2. Greedily remove the one that most improves validation set accuracy

## Machine Learning Outline

```
Machine learning:
- Supervised learning
- Overfitting
Ensembles of classifiers
    Bagging
    Cross-validated committees
    Boosting
    Stacking
- Co-training
```


## Effect of Reduced-Error Pruning




## Ensembles of Classifiers

- Assume

Errors are independent (suppose 30\% error) Majority vote

- Probability that majority is wrong...
= area under binomial distribution


Number of classifiers in error
If individual area is 0.3
Area under curve for $\geq 11$ wrong is 0.026
Order of magnitude improvement!

## Ensemble Construction II <br> Bagging

- Generate $k$ sets of training examples
- For each set

Draw $m$ examples randomly (with replacement) From the original set of $m$ examples

- Each training set corresponds to $63.2 \%$ of original (+ duplicates)
- Now train classifier on each set


## Ensemble Creation IV Stacking

Train several base learners
Next train meta-learner
Learns when base learners are right / wrong
Now meta learner arbitrates


Train using cross validated committees

- Meta-L inputs = base learner predictions
- Training examples = 'test set' from cross validation


## Constructing Ensembles Cross-validated committees

- Partition examples into $k$ disjoint equiv classes - Now create $k$ training sets

Each set is union of all equiv classes except one So each set has (k-1)/k of the original training data

- Now train a classifier on each set



## Ensemble Creation III

## Boosting

- Maintain prob distribution over set of training ex - Create $k$ sets of training data iteratively:
- On iteration $i$

Draw m examples randomly (like bagging)
But use probability distribution to bias selection
Train classifier number $i$ on this training set
Test partial ensemble (of iclassifiers) on all training exs
Modify distribution: increase $P$ of each error ex

- Create harder and harder learning problems...
- "Bagging with optimized choice of examples"

Machine Learning Outline

- Machine learning:
- Supervised learning
- Overfitting
- Ensembles of classifiers
- Co-training



## Observations

Can apply A 1 to generate as much training data as one wants

If $x 1$ is conditionally independent of $x 2 / f(x)$, then the error in the labels produced by A1 will look like random noise to A2!!!

Thus no limit to quality of the hypothesis A2 can make

Co-training snal lubesed data neected

- Suppose each instance has two parts:
$x=[x 1, x 2]$
$x 1, x 2$ conditionally independent given $f(x)$
- Suppose each half can be used to classify instance
$\exists f 1$, $f 2$ such that $f 1(x 1)=f 2(x 2)=f(x)$
- Suppose $f 1, f 2$ are learnable
$f 1 \in H 1, \quad f 2 \in H 2, \quad \exists$ learning algorithms A1, A2



## It really works!

- Learning to classify web pages as course pages
$x 1=$ bag of words on a page
$x 2=$ bag of words from all anchors pointing to a page
- Naïve Bayes classifiers

12 labeled pages
1039 unlabeled



