

Many Techniques Developed

- Fuzzy Logic
- Certainty Factors
- Non-monotonic logic
- Probability
- Only one has stood the test of time!

Aspects of Uncertainty

Suppose you have a flight at 12 noon
When should you leave for SEATAC What are traffic conditions? How crowded is security?

- Leaving 18 hours early may get you there But ... ?

Decision Theory = Probability + Utility Theory

Min before noon

20 min

P(arrive-in-time)
30 min
45 min
60 min
120 min
0.05

1080 min
0.25
0.50
0.75
0.98

Dep
Utility theory: representing \& reasoning about preferences

What Is Statistics?

- Statistics 1: Describing data
- Statistics 2: Inferring probabilistic models from data Structure Parameters

Why Should You Care?

The world is full of uncertainty Logic is not enough
Computers need to be able to handle uncertainty
Probability: new foundation for AI (\& CS!)
Massive amounts of data around today Statistics and CS are both about data Statistics lets us summarize and understand it Statistics is the basis for most learning Statistics lets data do our work for us

Logic VS.	Probability
Symbol: Q, R ...	Random variable: $\mathrm{Q} . .$.
Boolean values: T, F	Domain: you specify e.g. \{heads, tails\} [1, 6]
State of the world: Assignment to Q, R ... Z	Atomic event: complete specification of world: $\mathrm{Q} . . \mathrm{z}$ - Mutually exclusive - Exhaustive
	Prior probability (aka Unconditional prob: P(Q)
	Joint distribution: Prob. of every atomic event

Propositions

Assume Boolean variables
Propositions:
$A=$ true
$B=$ false
$a \vee b$

Proposition $=$ disjunction of atomic events in which it is true e.g., $(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b)$
$\Rightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)$

Outline

- Basic notions

Atomic events, probabilities, joint distribution Inference by enumeration
Independence \& conditional independence Bayes' rule

- Bayesian networks

Statistical learning

- Dynamic Bayesian networks (DBNs)

Markov decision processes (MDPs)

Syntax for Propositions

Propositional or Boolean random variables e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite) e.g., Weather is one of 〈sunny, rain, cloudy, snow \rangle Weather $=$ rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., Temp $=21.6$; also allow, e.g., $T e m p<22.0$.

Arbitrary Boolean combinations of basic propositions

Prior Probability

Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$
correspond to belief prior to arrival of any (new) evidence
Probability distribution gives values for all possible assignments:
$\mathbf{P}($ Weather $)=\langle 0.72,0.1,0.08,0.1\rangle$ (normalized, i.e., sums to 1)
Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathbf{P}($ Weather , Cavity $)=$ a 4×2 matrix of values:

$$
\begin{array}{l|llll}
\text { Weather }= & \text { sunny } & \text { rain } & \text { cloudy } & \text { snow } \\
\hline \text { Cavity }=\text { true } & 0.144 & 0.02 & 0.016 & 0.02 \\
\text { Cavity }=\text { false } & 0.576 & 0.08 & 0.064 & 0.08
\end{array}
$$

Any question can be answered by the joint distribution

Conditional Probability

Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know

NOT "if toothache then 80% chance of cavity"
(Notation for conditional distributions:
$\mathbf{P}($ Cavity \mid Toothache $)=2$-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
$P($ cavity \mid toothache, cavity $)=1$
Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.
$P($ cavity \mid toothache, 49 ersWin $)=P($ cavity \mid toothache $)=0.8$
This kind of inference, sanctioned by domain knowledge, is crucial

Inference by Enumeration

Start with the joint distribution

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true: $P(\phi)=\sum_{\omega: \omega=\phi} P(\omega)$
$P($ toothache $)=.108+.012+.016+.064$
$=.20$ or 20%
This process is called "Marginalization"

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & \left.=\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \longleftarrow\right) \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
$P($ toothachevcavity $=.20+.072+.008$

Problems ??

Worst case time: $O\left(n^{d}\right)$
Where $d=$ max arity
And $n=$ number of random variables

- Space complexity also $O\left(n^{d}\right)$

Size of joint distribution
How get $O\left(n^{d}\right)$ entries for table??

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Value of cavity \& catch irrelevant When computing P(toothache)

