Representing Uncertainty

CSE 573

Many Techniques Developed

- Fuzzy Logic
- Certainty Factors
- Non-monotonic logic
- Probability
- Only one has stood the test of time!

Aspects of Uncertainty

 Suppose you have a flight at 12 noon
When should you leave for SEATAC What are traffic conditions? How crowded is security?

• Leaving 18 hours early may get you there But ... ?

Decision Theory = Probability + Utility Theory Min before noon P(arrive-in-time) 20 min 0.05 30 min 0.25 45 min 0.50 60 min 0.75 120 min 0.98 1080 min 0.99 Depends on your *preferences* Utility theory: representing & reasoning about preferences

What Is Probability?

- **Probability:** Calculus for dealing with nondeterminism and uncertainty
- · Cf. Logic

Probabilistic model: Says how often we expect different things to occur

Cf. Function

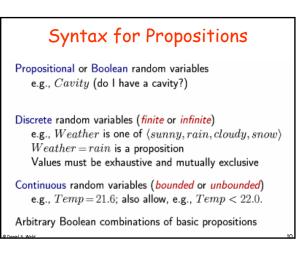
What Is Statistics?

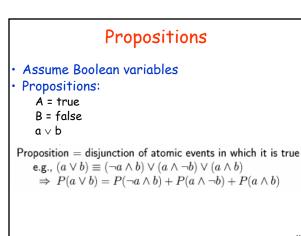
Statistics 1: Describing data

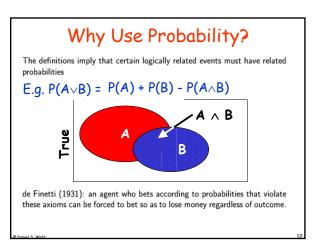
 Statistics 2: Inferring probabilistic models from data Structure

Parameters

Why Should You Care?


- The world is full of uncertainty Logic is not enough Computers need to be able to handle uncertainty Probability: new foundation for AI (& CS!)
- Massive amounts of data around today Statistics and CS are both about data Statistics lets us summarize and understand it Statistics is the basis for most learning
 Statistics lets data do our work for us

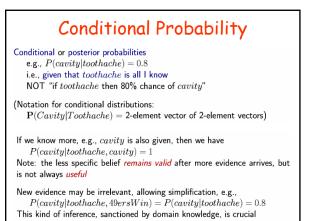

Outline


Basic notions

- Atomic events, probabilities, joint distribution Inference by enumeration Independence & conditional independence Bayes' rule
- Bayesian networks
- Statistical learning
- Dynamic Bayesian networks (DBNs)
- Markov decision processes (MDPs)

Logic <i>vs</i>	. Probability
Symbol: Q, R	Random variable: Q
Boolean values: T, F	Domain: you specify e.g. {heads, tails} [1, 6]
State of the world: Assignment to Q, R Z	Atomic event: complete specification of world: Q Z • Mutually exclusive • Exhaustive
	Prior probability (aka Unconditional prob: P(Q)
	Joint distribution: Prob. of every atomic event

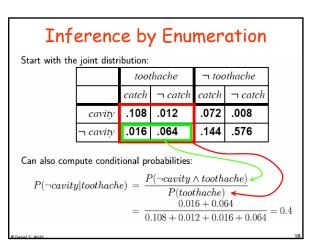
Prior Probability


Prior or unconditional probabilities of propositions e.g., P(Cavity=true)=0.1 and P(Weather=sunny)=0.72 correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments: $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2$ matrix of values:

 $\begin{array}{c|c} Weather = & sunny \ rain \ cloudy \ snow \\ \hline Cavity = true & 0.144 & 0.02 & 0.016 & 0.02 \\ Cavity = false & 0.576 & 0.08 & 0.064 & 0.08 \\ \end{array}$


Any question can be answered by the joint distribution

 $\begin{array}{l} \hline \begin{array}{l} \hline Conditional \ Probability \\ \hline Def: \qquad P(a|b) = \frac{P(a \wedge b)}{P(b)} \ \text{if} \ P(b) \neq 0 \\ \hline Product \ rule \ gives an alternative \ formulation: \\ P(a \wedge b) = P(a|b)P(b) = p(b|a)P(a) \\ \hline A \ general \ version \ holds \ for \ whole \ distributions, e.g., \\ \mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity) \\ \hline (View \ as \ a \ 4 \times 2 \ set \ of \ equations, \ not \ matrix \ mult.) \\ \hline \begin{array}{l} \hline Chain \ rule \ is \ derived \ by \ successive \ application \ of \ product \ rule: \\ \mathbf{P}(X_1, \ldots, X_n) = \mathbf{P}(X_1, \ldots, X_{n-1}) \ \mathbf{P}(X_n|X_1, \ldots, X_{n-1}) \\ = \ P(X_1, \ldots, X_{n-2}) \ \mathbf{P}(X_n|X_1, \ldots, X_{n-2}) \ \mathbf{P}(X_n|X_1, \ldots, X_{n-1}) \\ = \ \ldots \\ = \ \prod_{i=1}^n \mathbf{P}(X_i|X_1, \ldots, X_{i-1}) \end{array}$

ie
atch
8
6

Start with the			Enum	eru	non					
		toot	thache	\neg toothache						
		catch	\neg catch	catch	\neg catch					
	cavity	.108	.012	.072	.008					
	\neg cavity	.016	.064	.144	.576					
		For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega\models\phi} P(\omega)$								
			atomic ever	nts wher	e it is true					
	$\Sigma_{\omega:\omega\models\phi}P(\omega)$)								

• 5	And <mark>pace</mark> Size	re d n = n con of ju	se tim = max iumber iplexi oint di	e: C arit r of ty c istril	D(n ^d) ty randor also O bution	
		toothache		⊐ toothache		Value of cavity &
		catch	\neg catch	catch	\neg catch	catch irrelevant -
	cavity	.108	.012	.072	.008	When computing
	¬ cavity	.016	.064	.144	.576	P(toothache)
						r(1001nache)