
1

Bayesian Networks

CSE 573
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Last Time
• Basic notions

 Atomic events
 Probabilities
 Joint distribution

• Inference by enumeration
 Independence & conditional independence
 Bayes’ rule

• Bayesian networks
• Statistical learning
• Dynamic Bayesian networks (DBNs)
• Markov decision processes (MDPs)
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Axioms of Probability Theory
• All probabilities between 0 and 1

 0 ≤ P(A) ≤ 1
 P(true) = 1        
 P(false) = 0.

• The probability of  disjunction is:
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Tr
ue
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Conditional Probability 
• P(A | B) is the probability of A given B
• Assumes that B is the only info known.
• Defined by:
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ue
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Inference by Enumeration

P(toothache)=.108+.012+.016+.064
= .20  or 20%
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Inference by Enumeration
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Problems ??
• Worst case time: O(nd)

 Where d = max arity
 And n = number of random variables

• Space complexity also O(nd)  
 Size of joint distribution

• How get O(nd) entries for table??

Value of cavity &
catch irrelevant -
When computing
P(toothache)
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Independence
• A and B are independent iff:
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These two constraints are 
logically equivalent

• Therefore, if A and B are independent:
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Independence

Tr
ue

B

A A ∧ B
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Independence

Complete independence is powerful but rare
What to do if it doesn’t hold?
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Conditional Independence

Tr
ue

B

A A ∧ B

A&B not independent, since P(A|B) < P(A)

© Daniel S. Weld 12

Conditional Independence

Tr
ue

B

A A ∧ B

C

B ∧ C

A∧C

But:  A&B are made independent by ¬C

P(A|¬C) =
P(A|B,¬C)
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Conditional Independence

Instead of 7 entries, only need 5
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Conditional Independence II
P(catch | toothache,  cavity) = P(catch |  cavity)
P(catch | toothache,¬cavity) = P(catch |¬cavity)

Why only 5 entries in table?
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Power of Cond. Independence
• Often, using conditional independence 

reduces the storage complexity of the joint 
distribution from exponential to linear!!

• Conditional independence is the most basic & 
robust form of knowledge about uncertain 
environments.
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Bayes Rule

Simple proof from def of conditional probability:
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QED:

(Def. cond. prob.)

(Def. cond. prob.)

)(
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EP
HPHEPEHP =

(Mult by P(H) in line 1)

(Substitute #3 in #2)
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Use to Compute Diagnostic
Probability from Causal Probability

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001, 
P(S) = 0.1, 
P(S|M)= 0.8

P(M|S) =
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Bayes’ Rule & Cond. Independence
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Bayes Nets

•In general, joint distribution P over set of 
variables (X1 x ... x Xn) requires exponential 
space for representation & inference

•BNs provide a graphical representation of 
conditional independence relations in P

 usually quite compact
 requires assessment of fewer parameters, those 

being quite natural (e.g., causal)
 efficient (usually) inference: query answering and 

belief update
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Independence (in the extreme)
•If X1, X2,... Xn are mutually independent, then

P(X1, X2,... Xn ) = P(X1)P(X2)... P(Xn)
•Joint can be specified with n parameters

 cf. the usual 2n-1 parameters required
•While extreme independence is unusual, 

 Conditional independence is common 
•BNs exploit this conditional independence
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An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio
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Earthquake Example 
(con’t)

•If I know if Alarm, no other evidence influences 
my degree of belief in Nbr1Calls

 P(N1|N2,A,E,B) = P(N1|A)
 also: P(N2|N2,A,E,B) = P(N2|A) and P(E|B) = P(E)

•By the chain rule we have
P(N1,N2,A,E,B) = P(N1|N2,A,E,B) ·P(N2|A,E,B)·

P(A|E,B) ·P(E|B) ·P(B)
= P(N1|A) ·P(N2|A) ·P(A|B,E) ·P(E) ·P(B)

•Full joint requires only 10 parameters (cf. 32)

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Radio
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BNs: Qualitative Structure
•Graphical structure of BN reflects 
conditional independence among variables

•Each variable X is a node in the DAG
•Edges denote direct probabilistic influence

 usually interpreted causally
 parents of X are denoted Par(X)

•X is conditionally independent of all 
nondescendents given its parents

 Graphical test exists for more general 
independence

 “Markov Blanket”
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Given Parents, X is Independent of 
Non-Descendants
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For Example

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Radio
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Given Markov Blanket, X is 
Independent of All Other Nodes

MB(X) = Par(X) ∪ Childs(X) ∪ Par(Childs(X))
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Conditional Probability Tables

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio
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Conditional Probability Tables
•For complete spec. of joint dist., quantify BN

•For each variable X, specify CPT: P(X | Par(X))
 number of params locally exponential in |Par(X)|

•If X1, X2,... Xn is any topological sort of the 
network, then we are assured:

P(Xn,Xn-1,...X1) = P(Xn| Xn-1,...X1)·P(Xn-1 | Xn-2,… X1)
…  P(X2 | X1) · P(X1)

= P(Xn| Par(Xn)) · P(Xn-1 | Par(Xn-1)) … P(X1)
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Inference in BNs

•The graphical independence representation
 yields efficient inference schemes

•We generally want to compute 
 Pr(X), or 
 Pr(X|E) where E is (conjunctive) evidence

•Computations organized by network topology
•One simple algorithm: 

 variable elimination (VE)
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

Radio

P(b|j,m) = αP(b) ΣP(e) ΣP(a|b,e)P(j|a)P(m,a)
e              a
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Structure of Computation

Dynamic Programming
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Variable Elimination
•A factor is a function from some set of 
variables into a specific value: e.g., f(E,A,N1)

 CPTs are factors, e.g., P(A|E,B) function of A,E,B
•VE works by eliminating all variables in turn 
until there is a factor with only query variable

•To eliminate a variable:
 join all factors containing that variable (like DB)
 sum out the influence of the variable on new 

factor
 exploits product form of joint distribution
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Example of VE: P(N1)

Earthqk Burgl

Alarm

N2N1

P(N1)

= ΣN2,A,B,E P(N1,N2,A,B,E) 

= ΣN2,A,B,E P(N1|A)P(N2|A) P(B)P(A|B,E)P(E)

= ΣAP(N1|A) ΣN2P(N2|A) ΣBP(B) ΣEP(A|B,E)P(E)

= ΣAP(N1|A) ΣN2P(N2|A) ΣBP(B) f1(A,B)

= ΣAP(N1|A) ΣN2P(N2|A) f2(A)

= ΣAP(N1|A) f3(A)

= f4(N1)
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Notes on VE
•Each operation is a simply multiplication of 
factors and summing out a variable

•Complexity determined by size of largest 
factor

 e.g., in example, 3 vars (not 5)
 linear in number of vars, 
 exponential in largest factorelimination ordering 

greatly impacts factor size
 optimal elimination orderings: NP-hard
 heuristics, special structure (e.g., polytrees) 

•Practically, inference is much more 
•tractable using structure of this sort


