Bayesian Networks

CSE 573

Last Time

- Basic notions

Atomic events
Probabilities
Joint distribution

- Inference by enumeration

Independence \& conditional independence Bayes' rule
Bayesian networks
Statistical learning
Dynamic Bayesian networks (DBNs)
Markov decision processes (MDPs)

Axioms of Probability Theory

- All probabilities between 0 and 1
$0 \leq P(A) \leq 1$
$P($ true $)=1$
$P(f a l s e)=0$.
- The probability of disjunction is:
$P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true: $P(\phi)=\sum_{\omega: \omega \equiv \phi} P(\omega)$
$P($ toothache $)=.108+.012+.016+.064$

$$
=.20 \text { or } 20 \%
$$

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes that B is the only info known.
- Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \longleftrightarrow \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Problems??

Worst case time: $O\left(n^{\mathrm{d}}\right)$

Where $\mathrm{d}=$ max arity
And $n=$ number of random variables
Space complexity also $O\left(n^{d}\right)$
Size of joint distribution

- How get $O\left(n^{d}\right)$ entries for table??

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavily	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Value of cavity \& catch irrelevant When computing
P(toothache)

Independence

- A and B are independent iff:

Therefore, if A and B are independent:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A) \\
& P(A \wedge B)=P(A) P(B)
\end{aligned}
$$

Independence

Independence

A and B are independent iff
$\mathbf{P}(A \mid B)=\mathbf{P}(A)$ or $\mathbf{P}(B \mid A)=\mathbf{P}(B)$ or $\mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)$

\mathbf{P} (Toothache, Catch, Cavity, Weather)
$=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$
32 entries reduced to 12; for n independent biased coins, $2^{n} \rightarrow n$
Complete independence is powerful but rare What to do if it doesn't hold?

Conditional Independence

But: A\&B are made independent by $\neg C$

Conditional Independence
 \mathbf{P} (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
 If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 (1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity: (2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

Instead of 7 entries, only need 5

Conditional Independence II

$P($ catch | toothache, cavity $)=P($ catch | cavity $)$ $P($ catch | toothache, \neg cavity $)=P($ catch | \neg cavity $)$

Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$ Why only 5 entries in table?
Write out full joint distribution using chain rule:
\mathbf{P} (Toothache, Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch, Cavity $)$
$=\mathbf{P}($ Toothach \mid Catch, Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
I.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

Power of Cond. Independence

Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!

Conditional independence is the most basic \& robust form of knowledge about uncertain environments.

$$
\begin{array}{r}
\text { Bayes Rule } \\
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
\end{array}
$$

Simple proof from def of conditional probability:

$$
\begin{array}{ll}
& P(H \mid E)=\frac{P(H \wedge E)}{P(E)} \\
& P(E \mid H)=\frac{P(H \wedge E)}{P(H)} \\
& \text { (Def. cond. prob.) } \\
& P(H \wedge E)=P(E \mid H) P(H) \\
\text { QED: } \quad & P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
\end{array} \quad \text { (Substitute by P(H) in line 1) \#2) }
$$

Bayes' Rule \& Cond. Independence

$$
\mathbf{P}(\text { Cavity } \mid \text { toothache } \wedge \text { catch })
$$

$=\alpha \mathbf{P}($ toothache \wedge catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\alpha \mathbf{P}($ toothache \mid Cavity $) \mathbf{P}($ catch \mid Cavity $) \mathbf{P}($ Cavity $)$
This is an example of a naive Bayes model:
$\mathbf{P}\left(\right.$ Cause Effect ${ }_{1}, \ldots$, Effect $\left._{n}\right)=\mathbf{P}($ Cause $) \Pi_{i} \mathbf{P}\left(\right.$ Effect $_{i} \mid$ Cause $)$

Total number of parameters is linear in n

Bayes Nets

- In general, joint distribution P over set of variables $\left(X_{1} \times \ldots \times X_{n}\right)$ requires exponential space for representation \& inference - BNs provide a graphical representation of conditional independence relations in P usually quite compact requires assessment of fewer parameters, those being quite natural (e.g., causal)
efficient (usually) inference: query answering and belief update

BNs: Qualitative Structure

- Graphical structure of BN reflects conditional independence among variables
- Each variable X is a node in the DAG
- Edges denote direct probabilistic influence usually interpreted causally parents of X are denoted $\operatorname{Par}(X)$
- X is conditionally independent of all nondescendents given its parents

Graphical test exists for more general independence
"Markov Blanket"

Independence (in the extreme)

- If $X_{1}, X_{2} \ldots X_{n}$ are mutually independent, then

$$
P\left(X_{1}, X_{2}, \ldots x_{n}\right)=P\left(X_{1}\right) P\left(X_{2}\right) \ldots P\left(X_{n}\right)
$$

- Joint can be specified with n parameters
cf. the usual $2^{n}-1$ parameters required
-While extreme independence is unusual,
Conditional independence is common
-BNs exploit this conditional independence

Earthquake Example

 (con't)

- If I know if Alarm, no other evidence influences my degree of belief in Nbr1Calls $P(N 1 / N 2, A, E, B)=P(N 1 / A)$
also: $P(N 2 / N 2, A, E, B)=P(N 2 / A)$ and $P(E / B)=P(E)$
- By the chain rule we have
$P(N 1, N 2, A, E, B)=P(N 1 / N 2, A, E, B) \cdot P(N 2 / A, E, B)$.
$P(A \mid E, B) \cdot P(E \mid B) \cdot P(B)$
$=P(N 1 \mid A) \cdot P(N 2 \mid A) \cdot P(A \mid B, E) \cdot P(E) \cdot P(B)$
- Full joint requires only 10 parameters (cf. 32)

Given Parents, X is Independent of Non-Descendants

Conditional Probability Tables

- For complete spec. of joint dist., quantify BN
- For each variable X, specify CPT: $P(X / \operatorname{Par}(X))$ number of params locally exponential in $\mid \operatorname{Par}(X) /$
- If $X_{1}, X_{2}, \ldots X_{n}$ is any topological sort of the network, then we are assured:

$$
\begin{gathered}
P\left(X_{n} x_{n-1} \ldots X_{1}\right)=P\left(X_{n} / X_{n-1} \ldots X_{1}\right) \cdot P\left(X_{n-1} / x_{n-2} \ldots x_{1}\right) \\
\ldots P\left(X_{2} / x_{1}\right) \cdot P\left(X_{1}\right) \\
=P\left(X_{n} / \operatorname{Par}\left(X_{n}\right)\right) \cdot P\left(x_{n-1} \mid \operatorname{Par}\left(X_{n-1}\right)\right) \ldots P\left(X_{1}\right)
\end{gathered}
$$

Inference in BNs

- The graphical independence representation yields efficient inference schemes
- We generally want to compute
$\operatorname{Pr}(X)$, or
$\operatorname{Pr}(X / E)$ where E is (conjunctive) evidence
- Computations organized by network topology
- One simple algorithm:
variable elimination (VE)

$$
\begin{aligned}
& \text { Example of VE:P(N1) } \\
& P(N 1) \\
&= \Sigma_{N 2, A, B, E} P(N 1, N 2, A, B, E) \\
&= \Sigma_{N 2, A, B, E} P(N 1 \mid A) P(N 2 \mid A) P(B) P(A \mid B, E) P(E) \\
&= \Sigma_{A} P(N 1 \mid A) \Sigma_{N 2} P(N 2 \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E) \\
&= \Sigma_{A} P(N 1 \mid A) \Sigma_{N 2} P(N 2 \mid A) \Sigma_{B} P(B) f 1(A, B) \\
&= \Sigma_{A} P(N 1 \mid A) \Sigma_{N 2} P(N 2 \mid A) f 2(A) \\
&= \Sigma_{A} P(N 1 \mid A) f 3(A) \\
&= f 4(N 1)
\end{aligned}
$$

Variable Elimination

- A factor is a function from some set of variables into a specific value: e.g., $f(E, A, N 1)$

CPTs are factors, e.g., $P(A \mid E, B)$ function of A, E, B
-VE works by eliminating all variables in turn until there is a factor with only query variable

- To eliminate a variable:
join all factors containing that variable (like DB) sum out the influence of the variable on new factor
exploits product form of joint distribution

Notes on VE

-Each operation is a simply multiplication of factors and summing out a variable

- Complexity determined by size of largest factor
e.g., in example, 3 vars (not 5)
linear in number of vars,
exponential in largest factorelimination ordering greatly impacts factor size
optimal elimination orderings: NP-hard
heuristics, special structure (e.g., polytrees)
- Practically, inference is much more -tractable using structure of this sort

