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Reinforcement Learning
CSE 573

Ever Feel Like Pavlov’s Poor Dog?
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Logistics
• Reading for Wed

 AIMA Ch 20 thru 20.3
• Teams for Project 2
• Midterm 

 Typical problems – see AIMA exercises
 In class / takehome
 Open book / closed
 Length
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573 Topics 

Agency
Problem Spaces 

Search
Knowledge Representation & Inference 

Planning
Supervised
Learning 

Logic-Based Probabilistic

Reinforcement
Learning
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Pole Demo
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Review: MDPs
S = set of states set   (|S| = n)

A = set of actions  (|A| = m)

Pr = transition function Pr(s,a,s’)
represented by set of m n x n stochastic 
matrices (factored into DBNs)

each defines a distribution over SxS

R(s) = bounded, real-valued reward fun
represented by an n-vector
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Goal for an MDP
• Find a policy which:

 maximizes  expected discounted reward
 over an infinite horizon
 for a fully observable
 Markov decision process.
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Max

Bellman Backup

a1

a2

a3

s

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Qn+1(s,a)

Vn+1(s)

Improve estimate of value function
Vt+1(s) = R(s) + 

MaxaεA {c(a)+γΣs’εS Pr(s’|a,s) Vt(s’)}
Expected future reward
Aver’gd over dest states 
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Value Iteration
• Assign arbitrary values to each state

 (or use an admissible heuristic).

• Iterate over all states 
 Improving value funct via Bellman Backups

• Stop the iteration when converges
 (Vt approaches V* as t ∞)

• Dynamic Programming
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Note on Value Iteration
• Order in which one applies Bellman Backups

 Irrelevant!

• Some orders more efficient than others

10

Action cost = -1. Discount factor, γ = 1

In
it 
St
ate
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Expand figure
• Initialize all value functions to 0
• First backup sets goal to 10

• Use animation
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Policy evaluation
• Given a policy Π:S A, find value of each 

state using this policy.
• VΠ(s) = R(s) + c(Π(s)) +

γ[Σs’εS Pr(s’| Π(s),s)VΠ(s’)]
• This is a system of linear equations 

involving |S| variables.
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Policy iteration
• Start with any policy (Π0).
• Iterate

 Policy evaluation : For each state find VΠi(s).
 Policy improvement : For each state s, find action 

a* that maximizes QΠi(a,s).
 If QΠi(a*,s) > VΠi(s) let Πi+1(s) = a* 
 else let Πi+1(s) = Πi(s)

• Stop when Πi+1 = Πi
• Converges faster than value iteration but 

policy evaluation step is more expensive.
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Modified Policy iteration
• Instead of evaluating the actual value of 

policy by 
 Solving system of linear equations, …

• Approximate it:
 Value iteration with fixed policy.
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Excuse Me…
• MDPs are great, IF…

 We know the state transition function P(s,a,s’)
 We know the reward function R(s)

• But what if we don’t?
 Like when we were babies…
 And like our dog…
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How is learning to act possible when…

• Actions have non-deterministic effects
 Which are initially unknown

• Rewards / punishments are infrequent
 Often at the end of long sequences of actions

• Learner must decide what actions to take

• World is large and complex
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Naïve Approach
1. Act Randomly for a while

 (Or systematically explore all possible actions)
2. Learn 

 Transition function
 Reward function

3. Use value iteration, policy iteration, …

Problems?
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RL Techniques

1. Passive RL

2. Adaptive Dynamic Programming

3. Temporal-difference learning
 Learns a utility function on states 

• treats the difference between expected / actual 
reward as an error signal, that is propagated 
backward in time
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Concepts
• Exploration functions

 Balance exploration / exploitation

• Function approximation
 Compress a large state space into a small one
 Linear function approximation, neural nets, …
 Generalization
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Example:
• Suppose given policy
• Want to determine how good it is
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Objective: Value Function
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Just Like Policy Evaluation
• Except…?
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Passive RL
• Given policy π, 

 estimate Uπ(s)
• Not given 

 transition matrix, nor 
 reward function!

• Epochs: training sequences
(1,1) (1,2) (1,3) (1,2) (1,3) (1,2) (1,1) (1,2) (2,2) (3,2) –1
(1,1) (1,2) (1,3) (2,3) (2,2) (2,3) (3,3) +1
(1,1) (1,2) (1,1) (1,2) (1,1) (2,1) (2,2) (2,3) (3,3) +1
(1,1) (1,2) (2,2) (1,2) (1,3) (2,3) (1,3) (2,3) (3,3) +1
(1,1) (2,1) (2,2) (2,1) (1,1) (1,2) (1,3) (2,3) (2,2) (3,2) -1
(1,1) (2,1) (1,1) (1,2) (2,2) (3,2) -1
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Approach 1
• Direct estimation

 Estimate Uπ(s) as average total reward of epochs 
containing s (calculating from s to end of epoch)

• Pros / Cons?

Requires huge amount of data 
doesn’t exploit Bellman constraints!

Expected utility of a state = 
its own reward + 

expected utility of successors
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Approach 2
Adaptive Dynamic Programming

Requires fully observable environment
Estimate transition function M from training data
Solve Bellman eqn w/ modified policy iteration

Pros / Cons:

,( ) ( )s s
s

U R s M U sπ π πγ ′
′

′= + ∑

Requires complete observations
Don’t usually need value of all states
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Approach 3
• Temporal Difference Learning

 Do backups on a per-action basis
 Don’t try to estimate entire transition function!
 For each transition from s to s’, update:

( )( )( ) ( ) ( )) (R s s UU s s sUU ππ π πα γ ′← −++

α=

γ = 

Learning rate

Discount rate
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Notes
• Once U is learned, updates become 0:

0 ( ( ) ( ) ( )) when ( ) ( ) ( )R s U s U s U s R s U sπ π π πα γ γ′ ′= + − = +

• Similar to ADP
 Adjusts state to ‘agree’ with observed successor

• Not all possible successors

 Doesn’t require M, model of transition function

 Intermediate approach: use M to generate 
 “Pseudo experience”
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Notes II

( )( )( ) ( ) ( )) (R s s UU s s sUU ππ π πα γ ′← −++

• “TD(0)”
 One step lookahead

 Can do 2 step, 3 step…
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TD(λ)
• Or, … take it to the limit!
• Compute weighted average of all future states

1( )( )) (( )( ( )) t t tt t U sU s U s R s U sπ ππ πγα + −+ +←

1
0

( ) (1( ) ( ) ) ) )( )( (t tt i
i

t
i

t R s U sUU s s sUπ π ππ γ λ λα
∞

+ +
=

−+ −← + ∑
becomes

weighted average
• Implementation

 Propagate current weighted TD onto past states
 Must memorize states visited from start of epoch
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Notes III

• Online: update immediately after actions
 Works even if epochs are infinitely long

• Offline: wait until the end of an epoch
 Can perform updates in any order
 E.g. backwards in time
 Converges faster if rewards come at epoch end
 Why?!?

• ADP Prioritized sweeping heuristic
 Bound # of value iteration steps (small ∆ ave)
 Only update states whose successors have ⇑∆
 Sample complexity ~ADP
 Speed ~ TD
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Q-Learning
• Version of TD-learning where 

 instead of learning value funct on states
 we learn funct on [state,action] pairs

• [Helpful for model-free policy learning]

( ) ( )

(

( )( ) ( )

(, ) ( , ) ) (max ( , )

( )
be

( , ))
comes

a

U s U s

Q a s

U sR s U s

R s Q as sa sa QQ

π ππ π α

α

γ

γ
′

′+

′ ′+← −

+ −←

+
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Baseball

CMU Robotics

Puma arm learning to throw 
training involves 100 throws
(video is lame; learning is good)
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Part II

• So far, we’ve assumed agent had policy

• Now, suppose agent must learn it
 While acting in uncertain world
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Active Reinforcement Learning
Suppose agent must make policy while 

learning

First approach:
Start with arbitrary policy
Apply Q-Learning
New policy: 

In state s, 
Choose action a that maximizes Q(a,s)

Problem?
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Utility of Exploration
• Too easily stuck in non-optimal space

 “Exploration versus exploitation tradeoff”

• Solution 1
 With fixed probability perform a random action

• Solution 2
 Increase est expected value of infrequent states

Properties of f(u, n) ?? 
U+(s) R(s) + γ maxa f(Σs’ P(s’ | a,s) U+(s’), N(a,s))

 If n > Ne U    i.e. normal utility
 Else,                R+ i.e. max possible reward
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Part III
• Problem of large state spaces remain

 Never enough training data!
 Learning takes too long

• What to do??
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Function Approximation
• Never enough training data!

 Must generalize what learning to new situations

• Idea: 
 Replace large state table by a smaller,
 parameterized function
 Updating the value of state will change the value
 assigned to many other similar states
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Linear Function Approximation
• Represent U(s) as a weighted sum of 

features (basis functions) of s

• Update each parameter separately, e.g:

( )ˆ( ) ( )
ˆ (ˆ ( ) )

i i
i

U sR s U Us s
θ θ

θθ θ γα
θ

∂
+ ′+

∂
−←

1 1 2 2
ˆ ( ) ( ) ( ) ... ( )n nU s f s f s f sθ θ θ θ= + + +
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Example
• U(s) = θ0 + θ1 x + θ2 y
• Learns good approximation

10
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But What If…
• U(s) = θ0 + θ1 x + θ2 y

10

+ θ3 z

• Computed Features
 z= √ (xg-x)2 + (yg-y)2
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Neural Nets
• Can create powerful function approximators

 Nonlinear
 Possibly unstable

• For TD-learning, apply difference signal to 
neural net output and perform back-
propagation
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Policy Search
• Represent policy in terms of Q functions
• Gradient search

 Requires differentiability
 Stochastic policies; softmax

• Hillclimbing
 Tweak policy and evaluate by running

• Replaying experience

Walking Demo

UT AustinVilla

Aibo walking – before & after 1000 
training instances (across field)
… yields fastest known gait!
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~Worlds Best Player

• Neural network with 80 hidden units
 Used computed features

• 300,000 games against self
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Applications to the Web
Focused Crawling

• Limited resources
 Fetch most important pages first 

• Topic specific search engines
 Only want pages which are relevant to topic

• Minimize stale pages
 Efficient re-fetch to keep index timely
 How track the rate of change for pages?
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Standard Web Search Engine Architecture

crawl the
web

create an 
inverted
index

store documents,
check for duplicates,

extract links

inverted 
index

DocIds

Slide adapted from Marty Hearst / UC Berkeley]

Search 
engine 
servers

user
query

show results 
To user
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Performance
Rennie & McCallum  (ICML-99)
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Methods
• Agent Types

 Utility-based
 Action-value based (Q function)
 Reflex

• Passive Learning
 Direct utility estimation
 Adaptive dynamic programming
 Temporal difference learning

• Active Learning
 Choose random action 1/nth of the time
 Exploration by adding to utility function
 Q-learning (learn action/value f directly – model free)

• Generalization
 Function approximation (linear function or neural networks)

• Policy Search
 Stochastic policy repr / Softmax
 Reusing past experience
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Summary
• Use reinforcement learning when 

 Model of world is unknown and/or rewards are delayed
• Temporal difference learning 

 Simple and efficient training rule
• Q-learning eliminates need for explicit  T model
• Large state spaces can (sometimes!) be handled

 Function approximation, using linear functions
 Or neural nets


