

Logistics

- Team Meetings
- Midterm

Open book, notes
Studying

- See AIMA exercises

|Terminology
-Prior:
Probability of a hypothesis before we see any data
- Uniform Prior:
A prior that makes all hypothesis equaly likely
- Posterior:
Probability of a hypothesis after we saw some data
-Likelihood:
Probability of data given hypothesis

Experiment 2: Tails

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21$
$P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)$

Experiment 1: Heads

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.066 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.333 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.6$
Posterior: Probability of a hypothesis given data

$$
\begin{array}{rrrr}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\
\mathrm{P}\left(\mathrm{C}_{1}\right)=1 / 3 & \mathrm{P}\left(\mathrm{C}_{2}\right)=1 / 3 & \mathrm{P}\left(\mathrm{C}_{3}\right)=1 / 3 \\
\hline
\end{array}
$$

Experiment 2: Tails

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=?
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$

Experiment 2: Tails

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21$

Experiment 1: Heads

Which coin did I use?
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=?$
$P\left(C_{1} \mid H\right)=\alpha P\left(H \mid C_{1}\right) P\left(C_{1}\right)$

Your Estimate?

Maximum Likelihood Estimate: The best hypothesis that fits observed data assuming uniform prior
Most likely coin: Best estimate for $\mathrm{P}(\mathrm{H})$
$\mathrm{C}_{2} \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5
$$

$$
P\left(C_{2}\right)=1 / 3
$$

Using Prior Knowledge

We can encode it in the prior:

Comparison

After more experiments: HTH^{8}
ML (Maximum Likelihood):
$P(H)=0.5$
after 10 experiments: $P(H)=0.9$
MAP (Maximum A Posteriori):
$P(H)=0.9$
after 10 experiments: $P(H)=0.9$
Bayesian:
$P(H)=0.68$
after 10 experiments: $P(H)=0.9$

Comparison

ML (Maximum Likelihood):
Easy to compute
MAP (Maximum A Posteriori):
Still easy to compute
Incorporates prior knowledge
Bayesian:
Minimizes error => great when data is scarce Potentially much harder to compute

Continuous Case
-In the previous example,
we chose from a discrete set of three coins
- In general,
we have to pick from a continuous distribution
of biased coins

After 100 Experiments...

Review: Conditional Probability

- $P(A \mid B)$ is the probability of A given B
- Assumes that B is the only info known.

Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Conditional Independence

But: A\&B are made independent by $\neg C$

Topics

Parameter Estimation:
Maximum Likelihood (ML)
Maximum A Posteriori (MAP)
Bayesian
Continuous case

- Learning Parameters for a Bayesian Network
- Naive Bayes

Maximum Likelihood estimates
Priors

- Learning Structure of Bayesian Networks

$$
\begin{aligned}
& \text { Bayes Rule } \\
& P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
\end{aligned}
$$

Simple proof from def of conditional probability:

$$
\begin{array}{cl}
& P(H \mid E)=\frac{P(H \wedge E)}{P(E)} \\
& P(E \mid H)=\frac{P(H \wedge E)}{P(H)} \\
& \text { (Def. cond. prob.) } \\
& P(H \wedge E)=P(E \mid H) P(H) \\
\text { QED: } & P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)} \quad \text { (Substitute \#3 P P in \#2) prob.) }
\end{array}
$$

Topics

- Parameter Estimation:

Maximum Likelihood (ML)
Maximum A Posteriori (MAP)
Bayesian
Continuous case

- Learning Parameters for a Bayesian Network
- Nave Bayes

AAximumLikelihestimates
Priots

- Learning Structure of Bayesian Networks

What if we don't know structure?

Learning The Structure of Bayesian Networks

- Search thru the space
- For each structure, learn parameters
- Pick the one that fits observed data best
- Problem?

Exponential number of networks!
And we need to learn parameters for each!
Exhaustive search out of the question!
-So what now?

Initial Network Structure?

- Uniform prior over random networks?

Network which reflects expert knowledge?

The Big Picture

- We described how to do MAP (and ML) learning of a Bayes net (including structure)
- How would Bayesian learning (of BNs) differ?
- Find all possible networks
- Calculate their posteriors
-When doing inference, return weighed combination of predictions from all networks!

