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Statistical Learning
CSE 573
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Logistics
• Team Meetings
• Midterm 

 Open book, notes 
 Studying 

• See AIMA exercises
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573 Topics 

Agency
Problem Spaces 

Search
Knowledge Representation & Inference 

Planning 
Supervised
Learning

Logic-Based Probabilistic

Reinforcement
Learning 
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Topics
• Parameter Estimation:

 Maximum Likelihood (ML)
 Maximum A Posteriori (MAP)
 Bayesian
 Continuous case

• Learning Parameters for a Bayesian Network
• Naive Bayes

 Maximum Likelihood estimates
 Priors

• Learning Structure of Bayesian Networks

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?
P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?
P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1)=0.1 

C1 C2 C3

P(C1)=1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

Terminology

•Prior: 
 Probability of a hypothesis before we see any data

•Uniform Prior: 
 A prior that makes all hypothesis equaly likely

•Posterior: 
 Probability of a hypothesis after we saw some data

•Likelihood: 
 Probability of data given hypothesis

Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21
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Your Estimate?

What is the probability of heads after two experiments?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Best estimate for P(H) 

P(H|C2) = 0.5

Most likely coin: 

C2

Your Estimate?

P(H|C2) = 0.5

C2

P(C2) = 1/3

Most likely coin: Best estimate for P(H) 

P(H|C2) = 0.5C2

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

Using Prior Knowledge

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Using Prior Knowledge

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

We can encode it in the prior:

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006P(C2|H) = 0.165 P(C3|H) = 0.829

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.600
Compare with ML posterior after Exp 1:
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Experiment 2: Tails

Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|HT) = 0.035P(C2|HT) = 0.481P(C3|HT) = 0.485

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT)=0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Your Estimate?

What is the probability of heads after two experiments?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Best estimate for P(H) 

P(H|C3) = 0.9C3

Most likely coin: 

Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C3) = 0.9C3

Maximum A Posteriori (MAP) Estimate: 
The best hypothesis that fits observed data 

assuming a non-uniform prior

P(H|C3) = 0.9

C3

P(C3) = 0.70

Did We Do The Right Thing?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485
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Did We Do The Right Thing?

P(C1|HT) =0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

C2 and C3 are almost 
equally likely

A Better Estimate

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

Recall: = 0.680

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

Bayesian Estimate

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

= 0.680

Bayesian Estimate: Minimizes prediction error, 
given data and (generally) assuming a 

non-uniform prior

Comparison 
After more experiments: HTH8

ML (Maximum Likelihood):
P(H) = 0.5
after 10 experiments: P(H) = 0.9

MAP (Maximum A Posteriori):
P(H) = 0.9
after 10 experiments: P(H) = 0.9

Bayesian:
P(H) = 0.68
after 10 experiments: P(H) = 0.9

Comparison

ML (Maximum Likelihood):
Easy to compute 

MAP (Maximum A Posteriori):
Still easy to compute
Incorporates prior knowledge

Bayesian: 
Minimizes error => great when data is scarce
Potentially much harder to compute

Summary For Now

Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Bayesian Estimate

Uniform The most likely

Any The most likely

Any Weighted 
combination



6

Continuous Case
•In the previous example, 
 we chose from a discrete set of three coins

•In general, 
 we have to pick from a continuous distribution 
 of biased coins

Continuous Case
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Exp 2: Tails
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Continuous Case
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Bayesian Estimate
MAP Estimate

ML Estimate

Posterior after 2 experiments:

w/ uniform prior

with background
knowledge
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After 10 Experiments...
Posterior:

Bayesian Estimate
MAP Estimate

ML Estimate
w/ uniform prior

with background
knowledge
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After 100 Experiments...
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Topics
• Parameter Estimation:

 Maximum Likelihood (ML)
 Maximum A Posteriori (MAP)
 Bayesian
 Continuous case

• Learning Parameters for a Bayesian Network
• Naive Bayes

 Maximum Likelihood estimates
 Priors

• Learning Structure of Bayesian Networks
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Review: Conditional Probability 
• P(A | B) is the probability of A given B
• Assumes that B is the only info known.
• Defined by:

)(
)()|(

BP
BAPBAP ∧

=

A        BA∧B

Tr
ue

© Daniel S. Weld 40

Conditional Independence
Tr

ue

B

A A ∧ B

A&B not independent, since P(A|B) < P(A)
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Conditional Independence

Tr
ue

B

A A ∧ B

C

B ∧ C

A∧C

But:  A&B are made independent by ¬C

P(A|¬C) =
P(A|B,¬C)
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Bayes Rule

Simple proof from def of conditional probability:

)(
)()|()|(

EP
HPHEPEHP =

)(
)()|(

EP
EHPEHP ∧

=

)(
)()|(

HP
EHPHEP ∧

=

)()|()( HPHEPEHP =∧

QED:

(Def. cond. prob.)

(Def. cond. prob.)

)(
)()|()|(

EP
HPHEPEHP =

(Mult by P(H) in line 1)

(Substitute #3 in #2)
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An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio
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Given Parents, X is Independent of 
Non-Descendants
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Given Markov Blanket, X is 
Independent of All Other Nodes

MB(X) = Par(X) ∪ Childs(X) ∪ Par(Childs(X))

Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

We have: 
- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(B) = ?
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Now compute
either MAP or

Bayesian estimate

Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?
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Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior
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Topics
• Parameter Estimation:

 Maximum Likelihood (ML)
 Maximum A Posteriori (MAP)
 Bayesian
 Continuous case

• Learning Parameters for a Bayesian Network
• Naive Bayes

 Maximum Likelihood estimates
 Priors

• Learning Structure of Bayesian Networks
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Recap
• Given a BN structure (with discrete or 

continuous variables), we can learn the 
parameters of the conditional prop tables.

Spam

Nigeria NudeSex

Earthqk Burgl

Alarm

N2N1

What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

• Search thru the space… 
 of possible network structures!
 (for now, assume we observe all variables)

• For each structure, learn parameters
• Pick the one that fits observed data best

 Caveat – won’t we end up fully connected????

• When scoring, add a penalty
 ∝ model complexityProblem !?!?

Learning The Structure
of Bayesian Networks

• Search thru the space 
• For each structure, learn parameters
• Pick the one that fits observed data best
• Problem?

 Exponential number of networks!
 And we need to learn parameters for each!
 Exhaustive search out of the question!

• So what now?
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Learning The Structure
of Bayesian Networks

Local search!
 Start with some network structure
 Try to make a change 
 (add or delete or reverse edge)
 See if the new network is any better

 What should be the initial state?

Initial Network Structure?
• Uniform prior over random networks?

• Network which reflects expert knowledge?
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Learning BN Structure The Big Picture
• We described how to do MAP (and ML) 

learning of a Bayes net (including structure)

• How would Bayesian learning (of BNs) differ?

•Find all possible networks
•Calculate their posteriors
•When doing inference, return weighed 
combination of predictions from all 
networks!


