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Naïve Bayes & Expectation 
Maximization

CSE 573
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Logistics
• Team Meetings
• Midterm 

 Open book, notes 
 Studying 

• See AIMA exercises
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573 Schedule 

Agency
Problem Spaces 

Search
Knowledge Representation & Inference 

Planning 
Supervised
Learning

Logic-Based Probabilistic

Reinforcement
Learning 

Selected Topics
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Coming Soon 

Artificial 
Life

Selected Topics

Crossword 
Puzzles

Intelligent 
Internet Systems

© Daniel S. Weld 5

Topics
• Test & Mini Projects
• Review 
• Naive Bayes

 Maximum Likelihood Estimates
 Working with Probabilities

• Expectation Maximization
• Challenge

Estimation Models

Uniform The most 
likely

Any The most 
likely

Any Weighted 
combination

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Bayesian Estimate

Prior Hypothesis
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Exp 1: Heads
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Exp 2: Tails
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Bayesian Estimate
MAP Estimate

ML Estimate

Posterior after 2 experiments:

w/ uniform prior

with background
knowledge
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After 10 Experiments...
Posterior:

Bayesian Estimate
MAP Estimate

ML Estimate
w/ uniform prior

with background
knowledge
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Topics
• Test & Mini Projects
• Review 
• Naive Bayes

 Maximum Likelihood Estimates
 Working with Probabilities

• Expectation Maximization
• Challenge

Naive Bayes

•A Bayes Net where 
 all nodes are children of a single root node
•Why?
 Expressive and accurate?
 Easy to learn?

=`Is “apple” in message?’
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Naive Bayes

•All nodes are children of a single root node
•Why?
 Expressive and accurate? No - why?
 Easy to learn?

Naive Bayes

•All nodes are children of a single root node
•Why?
 Expressive and accurate? No
 Easy to learn? Yes

Naive Bayes

•All nodes are children of a single root node
•Why?
 Expressive and accurate? No
 Easy to learn? Yes
 Useful? Sometimes

Inference In Naive Bayes

Goal, given evidence 
(words in an email)

Decide if an email is spam

P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

Inference In Naive Bayes
P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

Independence 
to the rescue!

P(S|E)

P(E)

P(E)

Inference In Naive Bayes
P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

Spam if P(S|E) > P(¬S|E)
But...

P(E)

P(E)
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Inference In Naive Bayes
P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

Parameter Estimation Revisited

Can we calculate Maximum Likelihood 
estimate of θ easily?

P(S) = θ

Data:

+ 

Prior
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θ
Looking for the 
maximum of a 
function:
- find the derivative
- set it to zero

Max Likelihood
estimate
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Topics
• Test & Mini Projects
• Review 
• Naive Bayes

 Maximum Likelihood Estimates
 Working with Probabilities

• Smoothing
• Computational Details
• Continuous Quantities

• Expectation Maximization
• Challenge

Evidence is Easy?

•Or…. Are their problems?

#      + #    
#P(Xi | S) = 

Smooth with a Prior

p = prior probability
m = weight

Note that if m = 10, it means “I’ve seen 10 
samples that make me believe  P(Xi | S) = p”

Hence, m is referred to as the
equivalent sample size

#      + #    
# + mp

+ m
P(Xi | S) = 

Probabilities: Important Detail!

Any more potential problems here?

• P(spam | X1 … Xn) =  Π P(spam | Xi)i

• We are multiplying lots of small numbers 
Danger of underflow!

 0.557 = 7 E -18

• Solution? Use logs and add!
 p1 * p2 = e log(p1)+log(p2)

 Always keep in log form
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P(S | X)
• Easy to compute from data if X discrete

FT5

TT4

TF3

FT2

FT1

Spam?XInstance

• P(S | X) = ¼      ignoring smoothing…
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P(S | X)
• What if X is real valued?

True0.055

True0.034

False0.023

False0.012

False0.01         1

Spam?XInstance

• What now?

----- >T

----- >T

----- <T

----- <T

----- <T
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Anything Else?

T0.055
T0.034
F0.023
F0.012
F0.01         1
S?X#

.01   .02   .03   .04   .05

3

2

1

0

P(S|.04)?
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Fit Gaussians

T0.055
T0.034
F0.023
F0.012
F0.01         1
S?X#

.01   .02   .03   .04   .05

3

2

1

0

© Daniel S. Weld 29

Smooth with Gaussian
then sum

“Kernel Density Estimation”

T0.055
T0.034
F0.023
F0.012
F0.01         1
S?X#

.01   .02   .03   .04   .05

3

2

1

0
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Spam?

T0.055
T0.034
F0.023
F0.012
F0.01         1
S?X#

.01   .02   .03   .04   .05

3

2

1

0

P(S| X=.023)
P(¬S| X=.023)

What’s with 
the shape?
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Analysis

Attribute value
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Topics
• Test & Mini Projects
• Review 
• Naive Bayes
• Expectation Maximization

 Review: Learning Bayesian Networks
• Parameter Estimation
• Structure Learning

 Hidden Nodes
• Challenge
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An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Radio

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

We have: 
- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Parameter Estimation and 
Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?
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Recap
• Given a BN structure (with discrete or 

continuous variables), we can learn the 
parameters of the conditional prop tables.

Spam

Nigeria NudeSex

Earthqk Burgl

Alarm

N2N1

What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

• Search thru the space… 
 of possible network structures!
 (for now, assume we observe all variables)

• For each structure, learn parameters
• Pick the one that fits observed data best

 Caveat – won’t we end up fully connected????

• When scoring, add a penalty
 ∝ model complexityProblem !?!?

Learning The Structure
of Bayesian Networks

• Search thru the space 
• For each structure, learn parameters
• Pick the one that fits observed data best
• Problem?

 Exponential number of networks!
 And we need to learn parameters for each!
 Exhaustive search out of the question!

• So what now?

Learning The Structure
of Bayesian Networks

Local search!
 Start with some network structure
 Try to make a change 
 (add or delete or reverse edge)
 See if the new network is any better

 What should be the initial state?

Initial Network Structure?
• Uniform prior over random networks?

• Network which reflects expert knowledge?
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Learning BN Structure The Big Picture
• We described how to do MAP (and ML) 

learning of a Bayes net (including structure)

• How would Bayesian learning (of BNs) differ?

•Find all possible networks
•Calculate their posteriors
•When doing inference, return weighed 
combination of predictions from all 
networks!
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Hidden Variables

• But we can’t observe the disease variable
• Can’t we learn without it?
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We –could-
• But we’d get a fully-connected network

• With 708 parameters (vs. 78)
 Much harder to learn!

© Daniel S. Weld 47

Chicken & Egg Problem
• If we knew that a training instance (patient) 

had the disease…
 It would be easy to learn P(symptom | disease)
 But we can’t observe disease, so we don’t.

• If we knew params, e.g. P(symptom | disease) 
then it’d be easy to estimate if the patient 
had the disease. 
 But we don’t know 
 these parameters.
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Expectation Maximization (EM)
(high-level version)

• Pretend we do know the parameters
 Initialize randomly

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

• [M step] Treating each instance as 
fractionally having both values compute the 
new parameter values

• Iterate until convergence!
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Simplest Version
• Mixture of two distributions

• Know: form of distribution & variance, % =5
• Just need mean of each distribution

.01   .03   .05   .07   .09
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Input Looks Like

.01     .03     .05     .07     .09
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We Want to Predict

.01     .03     .05     .07     .09

?
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Expectation Maximization (EM)
• Pretend we do know the parameters

 Initialize randomly: set  θ1=?;   θ2=?

.01   .03   .05   .07   .09
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Expectation Maximization (EM)
• Pretend we do know the parameters

 Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09
© Daniel S. Weld 54

Expectation Maximization (EM)
• Pretend we do know the parameters

 Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09
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Expectation Maximization (EM)
• Pretend we do know the parameters

 Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

• [M step] Treating each instance as 
fractionally having both values compute the 
new parameter values
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ML Mean of Single Gaussian

Uml = argminu Σi(xi – u)2

.01   .03   .05   .07   .09
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Expectation Maximization (EM)
• Pretend we do know the parameters

 Initialize randomly
• [E step] Compute probability of instance 

having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

• [M step] Treating each instance as 
fractionally having both values compute the 
new parameter values
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Iterate
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Expectation Maximization (EM)
•

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

.01     .03     .05     .07     .09
© Daniel S. Weld 60

Expectation Maximization (EM)
•

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

• [M step] Treating each instance as 
fractionally having both values compute the 
new parameter values
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Expectation Maximization (EM)
•

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

.01     .03     .05     .07     .09

• [M step] Treating each instance as 
fractionally having both values compute the 
new parameter values
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Until Convergence
• Problems

 Need to assume form of distribution
 Local Maxima

• But
 It really works in practice!
 Can easilly extend to multiple variables

• E.g. Mean & Variance
• Or much more complex models…
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Crossword Puzzles


