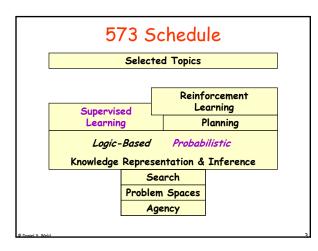
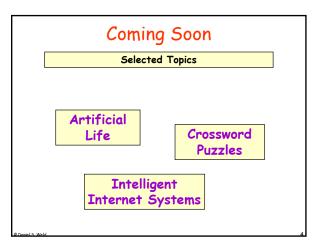
#### Naïve Bayes & Expectation Maximization CSE 573

## Logistics

 Team Meetings
 Midterm Open book, notes Studying

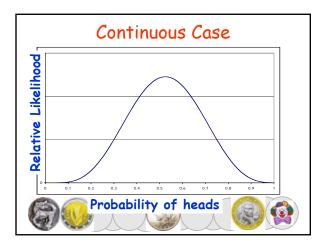
 See AIMA exercises

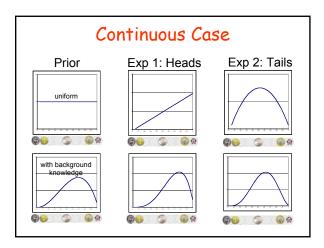


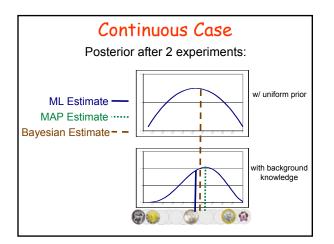


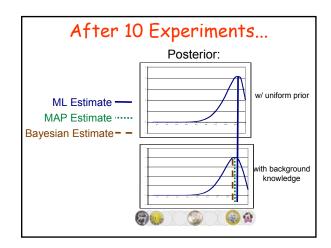


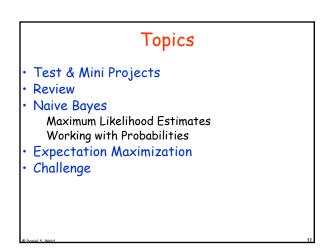
| Estimat                          | ion Mod | els                  |
|----------------------------------|---------|----------------------|
| AA                               | Prior   | Hypothesis           |
| Maximum Likelihood<br>Estimate   | Uniform | The most<br>likely   |
| Maximum A<br>Posteriori Estimate | Any     | The most<br>likely   |
| Bayesian Estimate                | Any     | Weighted combination |

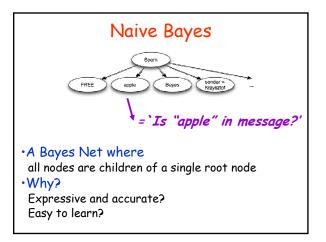


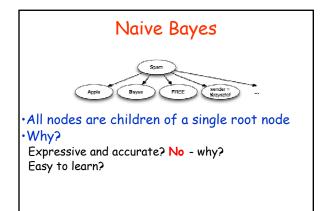


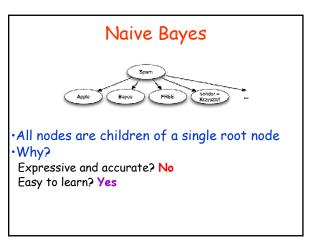


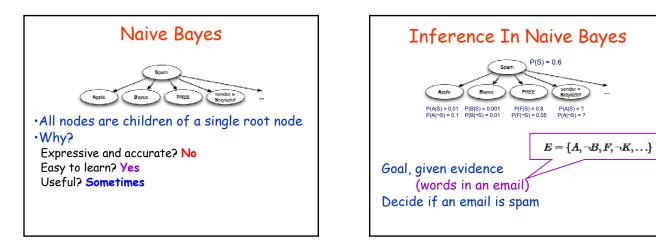


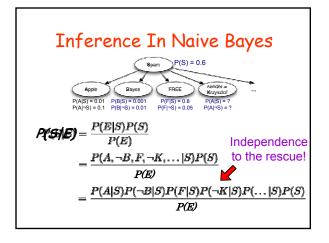


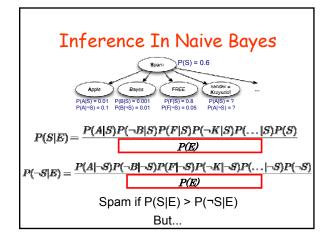


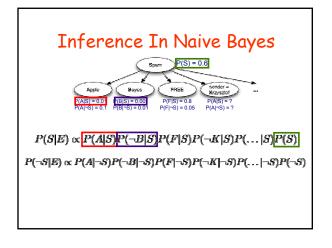


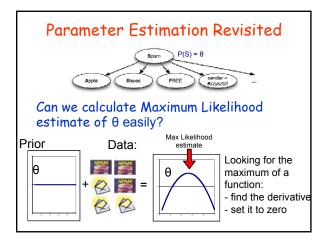


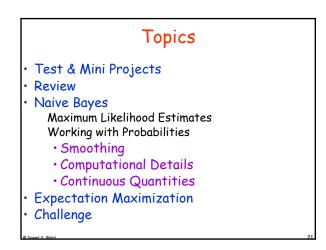


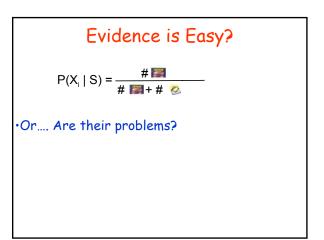












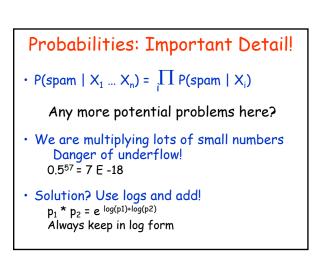
## Smooth with a Prior

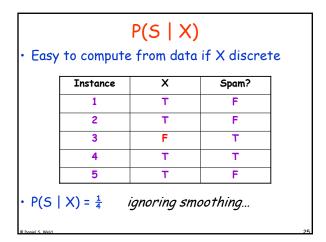
$$P(X_i | S) = \frac{\# \boxtimes + mp}{\# \boxtimes + \# \otimes + m}$$

p = prior probability m = weight

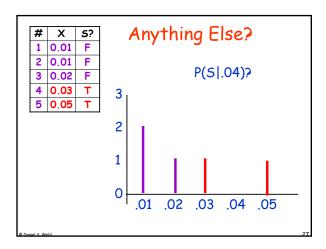
Note that if m = 10, it means "I've seen 10 samples that make me believe  $P(X_i | S) = p''$ 

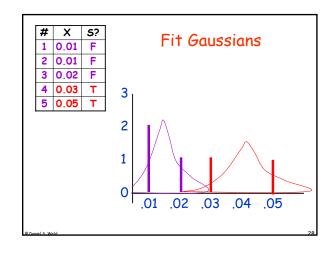
Hence, m is referred to as the equivalent sample size

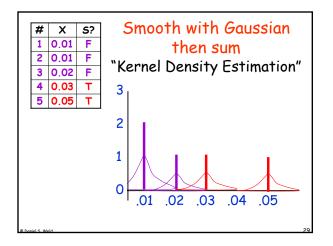


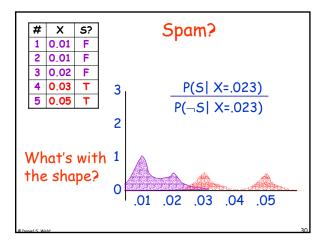


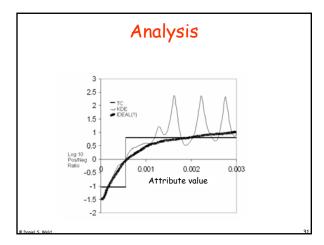
| Wha <sup>-</sup> | t if X is rea | l valued? |     |       |   |
|------------------|---------------|-----------|-----|-------|---|
| [                | Instance      | x         |     | Spam? | ĺ |
|                  | 1             | - 0-01    | ٢×  | False |   |
|                  | 2             | -0.01-    | ٢٢  | False |   |
|                  | 3             | -0.02-    | ٢×  | False |   |
|                  | 4             | -0.03-    | >T< | True  |   |
| ŀ                | 5             | -0.05-    | >T  | True  |   |



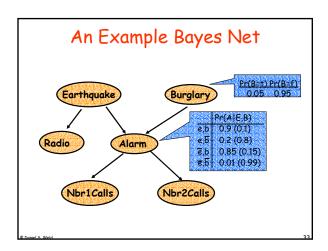


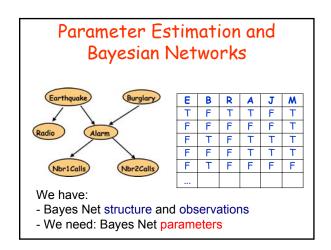


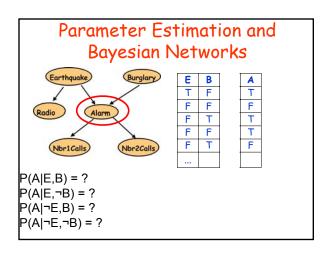


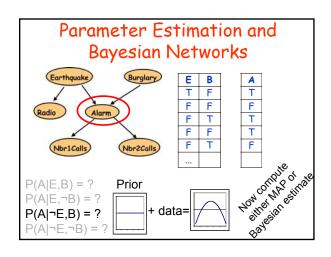


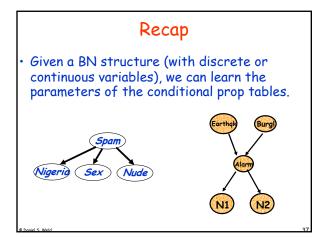


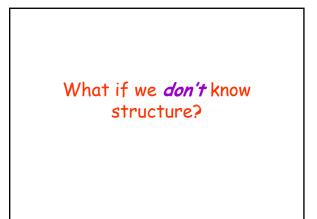












#### Learning The Structure of Bayesian Networks

Search thru the space... of possible network structures! (for now, assume we observe all variables)
For each structure, learn parameters
Pick the one that fits observed data best Caveat - won't we end up fully connected????

### • When scooling, add a penalty ∝ model complexity

#### Learning The Structure of Bayesian Networks

- Search thru the space
- For each structure, learn parameters
- Pick the one that fits observed data best

#### Problem?

Exponential number of networks! And we need to learn parameters for each! Exhaustive search out of the question!

So what now?

# Learning The Structure of Bayesian Networks

#### Local search!

Start with some network structure Try to make a change (add or delete or reverse edge) See if the new network is any better

What should be the initial state?

#### Initial Network Structure?

Uniform prior over random networks?

Network which reflects expert knowledge?

