

Logistics

- Team Meetings
- Midterm

Open book, notes
Studying

- See AIMA exercises

Topics

Test \& Mini Projects

- Review
- Naive Bayes

Maximum Likelihood Estimates
Working with Probabilities

- Expectation Maximization

Challenge

Naive Bayes

- All nodes are children of a single root node -Why?
Expressive and accurate? No Easy to learn? Yes

Inference In Naive Bayes

$P(S \mid E) \propto P(A \mid S) P(\neg B \mid S) P(F \mid S) P(\neg K \mid S) P(\ldots \mid S) P(S)$
$P(-S \mid E) \propto P(A \mid-S) P(\neg B \mid-S) P(F \mid-S) P(\neg K \mid-S) P(\ldots \mid-S) P(-S)$

Topics

Test \＆Mini Projects
Review
Naive Bayes
Maximum Likelihood Estimates
Working with Probabilities
－Smoothing
－Computational Details
－Continuous Quantities
Expectation Maximization
Challenge
\quad Topics
Test \＆Mini Projects
－Review
Naive Bayes
Maximum Likelihood Estimates
Working with Probabilities
－Smoothing
－Computational Details
－Continuous Quantities
Expectation Maximization
Challenge

Parameter Estimation Revisited

Can we calculate Maximum Likelihood estimate of θ easily？

Smooth with a Prior

$$
P\left(X_{i} \mid S\right)=\frac{\# \text { 国 }+m p}{\# \text { 国 } \#+m}
$$

$p=$ prior probability
$m=$ weight
Note that if $m=10$ ，it means＂I＇ve seen 10 samples that make me believe $P\left(X_{i} \mid S\right)=p^{\prime \prime}$

Hence，m is referred to as the equivalent sample size

Smooth with a Prior
$\begin{aligned} & \quad P\left(X_{i} \mid S\right)=\frac{\# \text { 目 }+m p}{\# \text { 园 }+\#+m} \\ & p=\text { prior probability } \\ & m=\text { weight } \end{aligned}$
Note that if $m=10$ ，it means＂I＇ve seen 10 samples that make me believe $P\left(X_{i} \mid S\right)=p^{\prime \prime}$ Hence，m is referred to as the equivalent sample size

Evidence is Easy？
$P\left(X_{i} \mid S\right)=\frac{\text { \＃图 }}{\text { \＃园 }+2}$
－Or．．．．Are their problems？

Probabilities：Important Detail！

－$P\left(\right.$ spam $\left.\mid X_{1} \ldots X_{n}\right)=\prod_{i} P\left(\right.$ spam $\left.\mid X_{i}\right)$
Any more potential problems here？
－We are multiplying lots of small numbers Danger of underflow！ $0.5^{57}=7$ E－18
－Solution？Use logs and add！
$p_{1}{ }^{*} p_{2}=e^{\log (p 1)+\log (p 2)}$
Always keep in log form

$$
P(S \mid X)
$$

Easy to compute from data if X discrete

Instance	X	Spam?
1	T	F
2	T	F
3	F	T
4	T	T
5	T	F

$$
\text { - } P(S \mid X)=\frac{1}{4} \quad \text { ignoring smoothing... }
$$

$$
P(S \mid X)
$$

What if X is real valued?

Instance	X	Spam?	
1	-0.01	$<\mathrm{T}$	False
2	$0.01-$	$<\mathrm{T}$	False
3	$0.02-$	$<\mathrm{T}$	False
4	$0.03-$	$>\mathrm{T}$	True
5	$0.05-$	$>\mathrm{T}$	True

-What now?

Topics

- Test \& Mini Projects
- Review
- Naive Bayes
- Expectation Maximization

Review: Learning Bayesian Networks

- Parameter Estimation
- Structure Learning

Hidden Nodes

- Challenge

Parameter Estimation and Bayesian Networks

We have:

- Bayes Net structure and observations
- We need: Bayes Net parameters

What if we don't know structure?

Learning The Structure of Bayesian Networks

Search thru the space...
of possible network structures!
(for now, assume we observe all variables)
For each structure, learn parameters
Pick the one that fits observed data best
Caveat - won't we end up fully connected????
When sફporihn! ! add a penalty
a model complexity

Learning The Structure of Bayesian Networks

- Search thru the space
- For each structure, learn parameters
- Pick the one that fits observed data best
- Problem?

Exponential number of networks!
And we need to learn parameters for each!
Exhaustive search out of the question!

- So what now?

Learning The Structure
of Bayesian Networks
Local search!
Start with some network structure
Try to make a change
(add or delete or reverse edge)
See if the new network is any better
What should be the initial state?

Initial Network Structure?

- Uniform prior over random networks?
- Network which reflects expert knowledge?

- But we can't observe the disease variable
- Can't we learn without it?

The Big Picture

- We described how to do MAP (and ML) learning of a Bayes net (including structure)
- How would Bayesian learning (of BNs) differ?
- Find all possible networks
- Calculate their posteriors
-When doing inference, return weighed combination of predictions from all networks!

We -could-

- But we'd get a fully-connected network

- With 708 parameters (vs. 78) Much harder to learn!

Expectation Maximization (EM) (high-level version)

- Pretend we do know the parameters Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
- [M step] Treating each instance as fractionally having both values compute the new parameter values

Iterate until convergence!

Expectation Maximization (EM)

- Pretend we do know the parameters Initialize randomly: set $\theta_{1}=$?; $\theta_{2}=$?

Expectation Maximization (EM)

- Pretend we do know the parameters
\quad Initialize randomly
-

E step] Compute probability of instance variable

Expectation Maximization (EM)

- Pretend we do know the parameters Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable

Expectation Maximization (EM)

Pretend we do know the parameters Initialize randomly
[E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values

Expectation Maximization (EM)

Pretend we do know the parameters Initialize randomly
[E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values

Expectation Maximization (EM)

[E step] Compute probability of instance having each possible value of the hidden variable

ML Mean of Single Gaussian

$$
U_{m l}=\operatorname{argmin}_{u} \sum_{i}\left(x_{i}-u\right)^{2}
$$

Iterate

Expectation Maximization (EM)

[E step] Compute probability of instance having each possible value of the hidden variable

- [M step] Treating each instance as fractionally having both values compute the new parameter values

Crossword Puzzles

